Shapes - an introductory MPS tutorial
[image: Accueil]
| Aleksey Makarkin | Oscar Rodriguez |

If you're new to MPS and want to try it out quickly, this is the right tutorial for you. Within two hours you'll get a new language and functional code that uses that language. In the tutorial you'll start from scratch and by walking along a safe and a convenient path you'll design the core elements of a new language. We'll avoid advanced concepts, complicated constructs and dark corners in order to get to the finish line quickly. At the end you'll know what MPS is all about and what principles it builds on.
So, please fasten your seat belts. We're in for a fast ride.
You may also watch this tutorial on-line as a screen-cast. Please check it out.

	Titre : Shapes - an introductory MPS tutorial
	Auteurs : Aleksey Makarkin, Oscar Rodriguez
	Parution : 8 avril 2019
	Licence :
				Copyright ® 2019 Aleksey Makarkin et Oscar Rodriguez. Aucune reproduction, même partielle, ne peut être faite de ce site et de l'ensemble de son contenu : textes, documents, images, etc. sans l'autorisation expresse de l'auteur. Sinon vous encourez selon la loi jusqu'à trois ans de prison et jusqu'à 300 000 € de dommages et intérêts.
			

I - Prerequisities
We'll assume you've gone through the initial parts of the Fast Track to MPS Tutorial and so are familiar with the MPS environment, understand the concept of a language and a solution and can command the MPS projectional editor. If, not, please consider spending the first 30 minutes or so of your time to check it out. Especially these keyboard shortcuts are key to your survival:
	Control + Space - to complete an incomplete word or to turn an invalid (red) identifier into a correct (black) one
	Alt + Enter - to display a pop-up menu with handy options applicable at the current editor position
	Control/Cmd + Up-Arrow/Down-Arrow - Expand/shrink the region of selected text
	Tab - to navigate around editable elements in the editor
	Control/Cmd + Z - Undo

We also assume you've installed MPS and you have it running in front of you. So now we can set off.
Cheating allowed
The result of this tutorial has been bundled as a sample project with MPS distributions. If you get stuck at any moment, feel free to open it from your home folder/MPSSamples in MPS and look at the implementation. Try to avoid copy-pasting, though, since you wouldn't learn much that way. (BTW, the sample also contains additional features explained in the Building an interpreter cookbook, which you can have some fun with later.)

II - Goal
You're going to implement a sample language for specifying graphical shapes. The language will allow its users to lay out visual two-dimensional shapes on a flat canvas. The definition will be then translated into a Java Swing application, which will visualize the layout on the screen.
	[image:]

	[image:]

The language could enable non-programmers to build Java applications without any knowledge of Java, Swing or the 2D Graphics API. You, on the other hand, will play the role of a language designer, who will prepare such an easy-to-use language building on his or her knowledge of Java. You automate the work of a UI programmer by providing a language and a generator that cover some of the cases that a UI programmer currently has to solve manually.
If you are not versed in Java or Swing, do not worry too much too early. We assumed this possibility and made the tutorial to guide you carefully. You'll be able to pass easily, you'll see.
III - Create a new project
We'll start with a fresh project. On the welcome screen you click on Create New Project and then follow the wizard.
	[image:]

	[image:]

You'll get an empty project containing and empty Language Definition and an empty Solution.
	[image:]

Solutions hold your programs. To write these programs, you use languages, either defined in the same project or imported ones. In our tutorial will first define a language and than use it to write code that we can execute.
IV - Languages and programs under the hood
First, here's a bit of background knowledge that you should know before going on. This is a piece of code that you will be able to create once you implement the Shapes language fully.

	[image:]

The language that we're building must allow for painting definitions, which consist of individual commands, each on a separate line and each defining a single shape to draw. Our language needs to cover each such command with a Concept. Concepts define the abstract syntax of a language, i.e. the set of allowed language logical constructs. A program then consists of Abstract Syntax Trees, which hold instances of these Concepts.
	[image:]

The AST of the short program above shows the abstract syntax - it consists of Nodes, each Node is an instance of a Concept that the language defines. Concepts define properties, children and references and Nodes then give the concrete values.
To wrap up the little theory here :
	Languages consist of Concepts
	Concepts define the logical (abstract) elements with their properties, children and references
	Programs (solutions) consist of ASTs, which consist of Nodes
	Nodes are instances of Concepts giving concrete values to properties, children and references of their Concepts

V - Graphical shape
Our language is going to be pretty straightforward. We'll need only a few concepts:
	Canvas - to define the top-most node representing the whole Painting definition and holding all Shapes
	Shape - representing a command to draw a shape on the Canvas, it will serve as a common super-concept to all concrete shapes, such as a circle or a square
	Circle - representing a command to draw a circle
	Square - representing a command to draw a square
	ColorReference - representing one of several pre-defined Colors defined in java.awt.Color

We'll start our practical exercise with the Shape concept. Just like in object-oriented programming, Concepts can extends one another and thus inherit the capabilities of their super-concept. The Shape concept will serve as such a common super-concept, holding the color property, since all shapes in our language will need the color property, so we can conveniently inherit it.
	[image:]

Right-click on the Structure aspect of the language and create a new Concept. You'll get a new Concept definition open in the editor.
	[image:]

We should give the Concept a descriptive name, Shape in our case will work fine.
So just type Shape where MPS indicates a missing name - the red <no name> field.
	[image:]

We created the Shape concept as a common super-concept for all shapes in our language and by itself Shape will not be used directly in ASTs. We'll mark Shape abstract to indicate explicitly that no instances (nodes) of Shape can be created.
If you misspelled the name of the concept and decide to change it, just go ahead and change it. Renaming things in MPS is just as easy.

It is the time to practice the Alt + Enter keyboard shortcut now.
Can you see the light-bulb symbol on the first line of the concept declaration? (You may need to move your cursor to the first line for the light-bulb to show up. It is a bit shy.) The light-bulb is hiding a contextual menu with tips of what you can possibly do to your code at the cursor position. Alt + Enter gives you access to the light-bulb menu (we call it Intentions menu) from the keyboard.
	[image:]

	[image:]

When positioned on the name of the Concept, the Alt + Enter keyboard shortcut brings up a contextual pop-up menu, which gives you the option to apply the "Make Abstract" intention to the Concept. Once you choose that option, the concept is marked as abstract. Now we could add properties, children and references that should be shared by all sub-concepts of Shape, but we will leave that for later to make our learning curve flat.
That's our first concept! Hurray! Time to add another one. How about Circle? Sure, by right-clicking on the Structure aspect we create another Concept and give it a name - Circle.
VI - Circle
Following the same steps, you need to right-click on the Structure aspect of the language and add a new concept. Name it Circle.
	[image:]

Circles should inherit capabilities from Shape, so we need to indicate than in the extends clause. Position the cursor at the beginning of the cell holding the "BaseConcept" text and hit the most useful keyboard shortcut in MPS - Control + Space - to invoke code completion. MPS will show you a list of options applicable as replacements for the "BaseConcept" text. We need to select Shape here to make Circle extend Shape.
	[image:]

If you do not see Shape in the completion menu, it is because your cursor in not on the first position of the word.
	[image:]

The characters to the left of the cursor are used as a filter to show only options that match the these characters. The further to the right your cursor goes, the fewer options will be displayed in the complexion menu.
	[image:]

You have to move your cursor with the left arrow or, if you press Control + Space again, MPS will move the cursor to the very left of the current word for you.
	[image:]

So this is our first concrete concept that will be used by users of our language. To give the concept a nice textual representation in code-completion dialogs and enable MPS to be smart about creating an instance of Circle whenever the user types "circle", you need to give the concept an alias 'circle'.
	[image:]

Notice the Tab key can help you navigate around editable elements in the editor. Use the Tab key frequently.

Each circle needs to specify its coordinates on the screen and its radius. We'll create properties that will hold these integer values. Navigate to the properties section, place the cursor on the "<< ... >>" symbol that represents an empty collection of values and press Enter. This will create an empty property.
	[image:]

	[image:]

You give the property a name "x", then hit Taband provide the type of the property - "integer". While typing "integer" you may hit the Control + Space keyboard shortcut to have the name of the type completed by MPS.
	[image:]

	[image:]

Then add properties for "Y" and "radius" and you'll be done with your first concrete concept.
VII - Square
Now you should try yourself to create a concept for square. Simply repeat the steps we did for Circle, just create different properties - upperLeftX and upperLeftY to hold the coordinates of the upper-left corner followed by size to specify the length of the sides of the square. Ultimately you should get to this:
	[image:]

Do not forget to extend the Shape concept on the first line. You may have noticed that while the completion menu (Control + Space) is displayed, you can still type characters and they will be used to filter out the entries available in the completion menu.
VIII - Canvas
Having created two shapes we can move on to defining a concept to hold them all in a painting. We'll create another concept, called Canvas, that will represent a scene composed of shapes. The user will be able to create multiple scenes (Canvasses), which will be mutually independent and will not share shapes. Each Canvas will hold a name and a list of shapes that it contains.
So yet again right-click on the Structure aspect of the language to create a new concept and give it a name Canvas.
	[image:]

Notice that unlike Circle or Square, Canvas does not extend Shape, but BaseConcept. Canvas is not supposed to be drawn nor placed on other Canvasses, so it should not extend Shape.

Navigate (using Tab) to the "<none>" text in the implements section and specify INamedConcept (either type it in or use Control + Space). INamedConcept is a Concept Interface that Canvas will now implement. Concept Interfaces, just like Concepts, add new capabilities to Concepts that implement them. INamedConcept in our case enriches Canvas with the name property, so Canvas instances (called Nodes) will have a name property so the user can easily distinguish between them.
	[image:]

	[image:]

Since Canvas will represent the painting scene and will by itself not be part of any other concept (it will not have any parent in the model), we mark it that instances can be root. This will allow Canvas instances to be the roots of ASTs.
To indicate that Canvasses may hold Shapes, we'll create a child collection of shapes. Again, hit Enter in the "<< ... >>" cell of the children section, type in the name of the child and the type of nodes it may hold. Do not forget about the* *Control + Space key shortcut to bring up the code-completion dialog.
	[image:]

	[image:]

You should end up with a concepts definition like this:

	[image:]

Now we've created enough concepts to have a minimalistic language ready for use. Let's give it a try.
IX - An early test ride
We need to build the language before we can use it. In the future, after you've made a change to your language definition, please remember to repeat the process of "Rebuild" in so that the change could take effect. Right-click on the top-most node (the very most root, representing the whole project, including the Language and the Solution) in the Project View and choose Rebuild Project.
	[image:]

Once built, the language will be available for use in the model inside the sandbox Solution. Simply create a new Canvas by right-clicking on the model and choosing the root concept to instantiate. Notice, the root concepts are those that show up in this menu and can be instantiated at the top-most level within a model.

	[image:]

Now give the Canvas instance a name and you've got your first painting. You can start using the concepts defined in the language to place visual shapes on the canvas.
	[image:]

	[image:]

The editing experience of our language as well as the layout is at this stage using some defaults, which we will change soon to get more customized look of the code.

Again, Control + Space is the keyboard shortcut to use heavily here. Use it each time you hesitate what to time. Notice that the code-completion dialog offers us the two types of shapes that we have created in the language.

	[image:]

	[image:]

	[image:]

You can insert additional shapes by pressing Enter at the end of the last shape in the list of shapes, which in our case is the closing "}" symbol for the "circle". Notice that Control + Space can spare you typing the names of the shapes.
	[image:]

	[image:]

Cool! I hope you're celebrating your success properly. Now, how about tuning those editors to make the code look better on the screen?
X - Editors
MPS uses a projectional editor. You might have noticed that already by feeling that the editor behaves slightly differently from what you would have expected. Unlike text-based languages, MPS never represents code as plain text. Instead, code in MPS means AST - Abstract Syntax Tree. Always.
This comes with huge benefits for language design, language composability and non-parseable notations, which you can read more about in the MPS documentation.
Here we should focus on the editing aspect of projectional languages. Since plain-text editors cannot represent ASTs reliably and since editing ASTs directly would be highly inconvenient, projectional languages have to provide editors for all Concepts that are part of the language. Sometimes even multiple alternative editors for a single Concept, but that's not our goal here. MPS can do a good job in many cases to provide a default editor for Concepts that do not have one. This is very nice for language prototyping. For convenient use by an end-user we, however, should spend some time preparing an explicit editor.
X-A - Shape
The Shape concept does not need an editor, since it is an abstract concept. So we will leave this one untouched.
X-B - Circle
For Circle we could create an editor that nicely places all necessary properties on a single line. We'll open the Circle concept in the editor, click the green '+' button in the lower left corner and pick Editor -> Concept Editor.
	[image:]

	[image:]

You'll get an empty editor definition for the Circle concept. Remember, Control + Space will be needed heavily to edit things here.
	[image:]

The editor for a concept in MPS consists of visual cells, each of which represents some piece of information belonging to the underlying concept. As nodes are composed hierarchically in an AST, so are their editors composed on the screen with sub-nodes' editors nested inside their ancestors' ones.
For Circle, we'd like to show value of all the properties (x, y, radius) plus some arbitrary text around them, all on a single line.
So first we'll choose a layout for these cells - indent layout will work just fine here. So hit Control + Space in the red cell and pick it up from the list. You may speed the search up by typing a square bracket followed by a minus symbol.
	[image:]

Now type "circle" to enter constant text that will be placed at the beginning of the line.

	[image:]

Hit Enter to create a new cell. Type "x:" to mark that the following cell contains the value of the x property.
	[image:]
	[image:]

Hit Enter again to create a new cell. Remember to press Enter first each time you want to add a new cell and then select the kind of cell to insert from the completion menu (Control + Space).
Now you have to pick the x property from the code-completion menu to bind the cell to the right property. Do not just type {x}, use Control + Space to display the completion menu and select the x property from the menu:
	[image:]

Now you can continue on your own to insert cells holding constant text and well as values of the y and radius properties. Remember, Enter will insert new cells, Control + Space will bring up the code-completion menu. You should end up with an editor like this.
	[image:]

X-C - Square
Square also needs an editor. Open the Square concept in the editor, hit the '+' symbol in the lower left corner and create a new Concept Editor. Following the instructions in the previous section, enter the editor definition as follows:
	[image:]

You can certainly do this on your own.
X-D - Canvas
The editor for the Canvas concept will be slightly different, since it holds a collection of shapes that all need to be given some space on the screen. Canvas thus spreads across multiple lines, each line will show one shape from the Canvas' collection of shapes. You, however, start in the same way as before, open the Canvas concept, hit the '+' symbol to create a new Concept Editor, insert an indent layout and enter some text to get the following:
	[image:]

Now bind the red cell to the name property. Since the property is inherited from the INamedConcept concept interface, it will be further down in the completion menu (Control + Space), but it is surely there.
	[image:]

You ensure that you have inserted the name property correctly if you can see the curly braces wrapping it. (Beware, you are not supposed to insert these curly braces yourself, they are added by MPS for all property cells.)
The following cell will hold a collection of shapes that have been added to the Canvas. Note how we compose editors here - Canvas only marks an area, in which individual shapes should be edited, and leaves that up to the shapes how they use that area.
Since the shapes should be organized vertically, each on a single line, you should pick vertical collection layout from the completion menu.
	[image:]

Be careful here. If you have selected a different layout than vertical, the shapes will not be nicely organised one below another, but perhaps one next to another on the same line, which, while quite innovative, may not be the most intuitive way to use your language..
	[image:]

You need to bind the red cell to the shapes child collection of Canvas.
	[image:]

	[image:]

Now, to place the collection below the name of the Canvas, you should use the Alt + Enter shortcut (or the light-bulb symbol) the bring up the intention pop up menu and pick "Add On New Line".
	[image:]

If you accidentally press "Add New Line", undo that action with Control/Cmd + Z.
You'll get the final editor definition:
	[image:]

If you version looks different, there may be several reasons:
	You inserted the name property from the completion menu. If you only typed "name", the cell is most likely not bound to the name property and will only be ever showing the text "name" when used.
	You set the "Add On New Line" intention. If you accidentally chose "Add New Line" instead, the shapes cell will not be drawn below the "Painting ..." first line, but next to it.
	If you set the "Add On New Line" property on a different cell that the shapes cell, the layout will also look different from the expected one.
	You chose a different layout for the shapes collection than vertical. Different layouts use different symbols. Vertical uses "(>", while "(-" and "(/" belong to the indent and horizontal layouts, respectively.

In all these cases repetitive Undo (Control/Cmd + Z) will help.
XI - The second run
Now you can rebuild the project again (right-click on the very top node in the Project View) and look at the sandbox code in MyDrawing.
	[image:]

Look how the code layout changed:
	[image:]

It is the same code (AST), but it is organized on the screen differently. While previously it was an ugly tree-like text with lots of curly braces, now the code reflects the editor definition that we provided to MPS.
If your view is different, revisit the three editors. Given that they are fairly small, feel free to delete then and do them over, if needed. You can delete a whole editor definition if you locate it in the Project view under the Editor aspect model and press Delete or right-click and choose delete in the context menu. Alternatively, you may keep pressing the Delete and Backspace buttons inside the editor definition until you remove all the suspiciously looking code.
XII - Coloring
Now we should come back to Shape and add support for colors. Since both Circle and Square extend Shape, they will both inherit the color.
If for any reason you need to jump ahead to the generator, now is a good time to do so. You'll just need to ignore all the places where we refer to colors in the generator chapter.

Since we would like to allow the users of our language to pick the color for the shape from a list of pre-defined colors, we can't just use a textual property to hold the color value. Instead we'll add a reference to Shape and have this reference point to one of the pre-defined color constants. Let's start with creating such constants that will represent pre-defined colors.
XII-A - Concept for colors
One way would be to use MPS enums to define the colors. This would, however, not allow users to define their own colors. All the colors would be defined in the enum that would be a part of the Shapes language. Instead, we will use full a blown concept for colors and nodes of that concept will define the individual colors. These color nodes can be defined as part of the language (inside so called accessory models) or directly in user models next to instances of the Canvas concept.
First we're going to create a concept that will represent a color constant. We'll call it Color and it will be rootable, so that we can place it inside models:
	[image:]

An editor is also needed:
	[image:]

XII-B - Pre-defined colors
Now, rebuild your project. The Color concept that we have just added needs to be compiled, so that we can use it to create some colors. We need to provide concrete nodes of the Color concept, which will represent the individual color constants and which the user of our language will be able to refer to from their Canvasses. We will utilize Accessory models for this. Accessory models are models inside a language definition that hold arbitrary nodes, which become part of the language and are visible to the language users.
So first, we need to create an Accessory model in the language:
	[image:]

The model demands a name. Please make sure the stereotype box is empty, if it is not disabled by MPS:
	[image:]

The Shapes language, which declares the Color concept, is the only language that we need imported in the accessory model:
	[image:]

Switch to the Used Languages tab. It is either empty or contains a devkit that we can leave in the list. Click the plus symbol and select the Shapeslanguage from the list. The language must have been added to the list of used languages.
Then switch to the Advanced tab and select the Do Not Generate checkbox:
	[image:]

Then click OK to close the dialog.
XII-C - Create colors
Now you should be able to create color constants in the newly created accessory model:
	[image:]

If you do not see Color in the New menu, you most likely forgot to rebuild the language. Or, you have missed the can be root property of the Colorconcept, which has to be set to true.
	[image:]

XII-D - The first touch on dependencies
A crucial piece of knowledge in MPS is how to handle dependencies and imported languages. To display the dependencies of a module or a model, you have to navigate to it in the left-hand side Project View panel (Alt/Cmd + 1 to open the panel). Try that for the Shapes language. Select it in the tree:
	[image:]

Hit Alt + Enter (or right-click on it and choose Module/Model Properties) and you'll get a dialog with the properties of the module/model. The Dependencies tab shows the modules/models that the current module/model depends on (aka import in Java, require in Ruby, etc.).
	[image:]

Yours is most likely empty now. You add elements using the '+' button. In the small search dialog type a few characters of the name of the desired dependency to narrow down the search and hit Enter when you locate the correct one.
	[image:]

In the Used Languages section you indicate, which languages (syntaxes) you want to be able to use in your module/model.
	[image:]

We do not need to change anything here, so let's continue by clicking the OK button.
If you, at any point when working with MPS, cannot type the code that we propose in the tutorial, most likely you have not properly set the dependencies. So please pay attention to the places, where the tutorial mentions dependencies and suggest that you should add a dependency or import a language.

XII-E - Concept for color reference
Now our language needs a way to indicate the desired color of a shape in our code. Thus Shape should be referring to one of the color constants in the accessory model of the Shapes language. MPS will automatically populate the completion menu with all available color constants, whenever the user is about to specify a color for a Shape.
Create a new concept in the Structure aspect model and name it ColorReference:
	[image:]

ColorReference keeps a reference (a pointer going across the AST hierarchy) pointing to a single color constant (node of the Color concept).
In order to display and edit the colors we also need an editor for ColorReference.
	[image:]

The reference should simply display the name of the color constant that it refers to, so we pick target from the code-completion menu and specify that the name property of the color constant is what we want to show to the user.
	[image:]

You should get an editor definition as follows:
	[image:]

XII-F - Updating Shape
The Shape concept is a good place to put our new ColorReference, since both Circle and Square will inherit it. Open it in the editor an make the change:
	[image:]

Shape may also define an editor component to define the editor for the color and Circle as well as Square will be able to reuse that editor component in their editors thus avoiding duplication.
Hit the '+' symbol and create a new Editor Component.
	[image:]

	[image:]

The editor component definition a language that you are already familiar with and so you will be easily able to specify an indent layout, define a constant text cell followed by a cell bound to the color property.
XIII - Embedding the editor component
The editor component defined for Shape should now be added into the editors for Circle and Square.
	[image:]

	[image:]

	[image:]

The editor component becomes just another cell in the editor's layout.
XIV - A third run
Now it is the best time to rebuild the language. Right-click on the Language node in the Project View and select "Rebuild Language".
If you rebuilt the whole project instead of just the Language here, you'd get a couple of errors, since the Solution now misses the newly defined color properties. We'll add those instantly.

Opening the MyDrawing program should show you the empty cells for colors in red. Try Control + Space in them and you will get a list of colors that you can pick from.
	[image:]

	[image:]

Now our language is fully defined. We can create a Canvas and add Circles and Squares to it, specifying their positions, sizes and colors. That's quite an achievement for such a short time.
What we're missing yet is the translation of these programs into Java, so that we could run them and see the shapes nicely drawn on the screen. If you continue you'll soon realize that we're almost there.
XV - Generator
Our language now needs a generator so that we could generate code that could be compiled and run. We will choose BaseLanguage as the target for our DSL. BaseLanguage is a copy of Java distributed with MPS and so it can be easily transformed into textual Java sources for the Java compiler to compile into binaries. We could possibly choose any other target platform and language, provided you plug-in a definition of that target language into your project.
The generator will be very straightforward and will only need a few rules and a single mapping configuration.
	[image:]

Your language already contains a skeleton of an empty generator. You can open the mapping configuration, that will specifying what rule to apply when. We will be adding configuration entries here gradually.
Here's the idea behind the generator that we will implement:
	A Canvas gets translated into a Java class, which will extend Java's JFrame class and hold a JPanel that all the shapes will be drawn on
	Each Shape gets translated into a method call on the Graphics object to draw the shape on the JPanel
	A ColorReference gets translated into a reference to the appropriate color constant in the java.awt.Color class.

Let's start with the class for Canvas. You need to add a new entry in the root mapping roles, since Canvas is a root concept. Hit Enter to insert a new empty rule:
	[image:]

You need to use an Intention (Alt + Enter) the be able to select "New Root Template" from the pop-up menu.
This rule defines that a Canvas node should be replaced with a Java class. The template defines with what class:
	[image:]

The root template should be generating a Java class, so you need to pick "class".
	[image:]

This is the finishes root mapping rule. The map_Canvas is a name of the root template that was created in the generator. You should open it up so we could make changes to it.

	[image:]

First we need to set the dependencies of the generator module to depend on the JDK module. Without this dependency you would not be able to compile your sandbox eventually.
Note: Remember, Alt + Enter will bring up the properties of the node selected in the left-hand Project View.
	[image:]

Second, the generator model must depend on java.swing and java.awt, as specified below. Without these dependencies you would not be able to type the Java Swing code needed to implement the generator templates:
	[image:]

With the dependencies you can start typing the Java code that will be part of the generated Java class. We will then parametrize the code with values from the Canvas, to make it reflect the user's intent.
The class needs to extend JFrame.
	[image:]

Now you'll add the main method to get a runnable Java class. You can use the "psvm" live template to enter the method quickly.
	[image:]

	[image:]

Inside the method, we'll need to instantiate map_Canvas.
	[image:]

We'll also need a method to initialize the frame. Type "method" and use Control + Space to complete the method definition:
	[image:]

Call the method Initialize() and make sure that the method is called from main.
	[image:]

Notice the canvas.initialize() call in the main() method. Have you added it?

All the shapes will be drawn on a JPanel, so we now need to add one as a field.
	[image:]

	[image:]

Notice, we use an anonymous inner class to be able to customize the JPanel a bit.
Important: To create an anonymous inner class in BaseLanguage, position your cursor right after new JPanel() and before the ending semicolon. Then hit the "{" (left curly brace) key and MPS will add the ending "}" symbol. Now keep the cursor between these "{" and "}" symbols to add methods to the panel's anonymous inner class.
We'll override the paintComponent method of JPanel, because this is the method where Java allows us to easily draw the shapes on the JPanel. Hit Control/Cmd + O, while the cursor is inside the JPanel's anonymous class body between the "{" and "}" symbols, to invoke the Override method dialog for the JPanel and select the paintComponent method.
	[image:]

Make sure your paintComponent() method is correctly nested inside the JPanel's anonymous inner class as displayed in the screen-shots. Also make sure it is called paintComponent, not paintComponents.
Enter the following code into the method:
	[image:]

Now, please, fill in the initialize method and we have a template ready:
	[image:]

XV-A - Parametrizing the template
The code in template currently does not use any values from the input model. It simply hardcodes the code and so the code generated by the template will always be the same, no matter what shapes are created in the user model. This has to change. The template must react to the input model and the generated code must reflect the shapes, their sizes and colors. The properties and children of Canvas should be inserted into the template through macros. MPS gives you three types of macros:
	property macros - to insert properties from the input model
	node macros - to replace nodes in the template with nodes from the input model
	reference macros - to adjust references in the template to point to nodes in the input model

We'll gradually use all of these.
To start with, we'll customize the name of the generated class and the Title of the frame with the name of the Canvas. Place the cursor on the name of the class - map_Canvas and hit Alt + Enter.
	[image:]

	[image:]

Now select the node.name property macro from the pop-up menu.
	[image:]

The "map_Canvas" text is now wrapped (annotated) with a property macro, which changes the name property to the name of the Canvas. The Inspector panel (Alt + 2) can be used to enter or modify the property macro, as well. Currently it returns the value of node.name, which is the name of the current Canvas.
Now you can wrap the "Title" text to customize the title of the frame. Using the Control/Cmd + Up Arrow key shortcut select the text "Title" without the surrounding " characters and with Alt + Enter insert the correct property macro:
	[image:]

The code should now look like this:
	[image:]

XV-B - Drawing shapes
Our template assumes the code that draws shapes should be placed inside the paintComponent method of the JPanel field. The statement "System.out.println("Draw here");" serves as a placeholder for the real code that will draw all shapes. We will use the COPY_SRC macro to replace the placeholder statement with a statement that draws a single shape and we'll leverage the LOOP macro to repeat that for all shapes defined in the current Canvas.
Now, please select the placeholder statement including its closing semicolon using the Control/Cmd + Up Arrow key shortcut, hit Alt + Enter and choose the appropriate Node macro option to insert a LOOP macro to loop through all the child Shapes of the current Canvas.
	[image:]

Again, the Inspector (Alt + 2) shows the binding code.
	[image:]

If the LOOP macro is underlined in red, most likely you did not select the whole line before applying the intention. Undo, select the whole line including the semicolon and apply the Add LOOP macro intention again.
The LOOP macro will repeat the "System.out.println("Draw here");" statement for each shape listed in node.shapes.
We, however, need to have the "System.out.println("Draw here");" statements replaced with code that draws each of these shapes. The COPY_SRC macro will do just that. Please, select the whole statement within the LOOP macro again, including the semicolon, hit Alt + Enter and choose Node macro.
	[image:]

Type in COPY_SRC (Control + Space) and you get a macro that will replace "System.out.println("Draw here");" with the current shape for all shapes that the LOOP macro provides.
	[image:]

	[image:]

Make sure your COPY_SRC macro wraps the whole statement, including the semicolon, like it is displayed in the picture. If not, undo, select the whole statement and insert the COPY_SRCmacro again.
XV-C - Generating circles
Now we get Canvas to be translated into a Java class and we also made a place for Shapes to add the code that will draw them. The time is up for us to define the actual translation rules for Shapes themselves, so that we get a "graphics.drawCircle()" method inserted in the generated code as a replacement for the Circle shape. You need to open the main mapping configuration and add a new entry to the "reduction rules" section:
	[image:]

Alt + Enter to create a new template:
	[image:]

The new reduct_Circle template will show up in the left-hand Project View.
	[image:]

You may also create a reduction rule for Square:
	[image:]

Open the reduce_Circle template. We now need to specify the Java code that will replace Circles. Remember, that the Java code will be placed in map_Canvas inside the paintComponent method.
	[image:]

First, we'll enter a BlockStatement, that will wrap our template:

	[image:]

We will need a local variable of the Graphics type as a place holder for the paintComponent parameter of the same name. And yet again a BlockStatement.
	[image:]

	[image:]

	[image:]

To draw a circle in Java, we'll use the Graphics object to set the color first and that invoke its drawOval method. Please enter the code below:
	[image:]

	[image:]

Then use Control/Cmd / Up Arraw to select the inner BlockStatement, hit Alt + Enter (light-bulb) and pick "Create Template Fragment" from the intentions menu. This will mark the selected fragment of the code as the actual template, which will eventually be placed into map_Canvas
	[image:]

The graphics local variable needs our special attention. The current template as we've built is so far relies on naming match between the reduce_Circle template, which refers to the graphics local variable, and the map_Canvas template, which defined a graphics method parameter in the paintComponent method. This is a working solution, which, however, is quite fragile. Renaming either of the two graphics variables will result in broken generated code. Will implement a more robust solution for Squares right below the solution for Circle.

XV-D - Parametrization
The code now needs to be parametrized with actual values from the Circle node.

	[image:]

The first value "10" should be replaced with the x coordinate of the Circle node. A property macro will do that. Similarly the second value "10" should be replaced with the y coordinate.
	[image:]

The third and fourth values "10" should both be replaced with the radius value of the circle node.
	[image:]

The drawOval() method's third and fourth parameters specify the oval's width and height, respectively. Since we want to draw a circle, we need to provide the same values for both arguments. This is why the property macros for the third and fourth parameters both specify node.radius.

Finally, the "Color.red" color placeholder reference should be replaced with the actual target of the color reference of the Circle node. We will use a reference macro to replace the references. Please put the cursor on the "red" word and hit Alt + Enter.

	[image:]

The reference macro will replace the reference to red with a reference to a node that we specify in the Inspector window:
	[image:]

The referent function returns either a stringvalue (a name of the desired declaration to refer to) or node<StaticFieldDeclaration> (a node representing a StaticFieldDeclaration), because red itself is a reference to node<StaticFieldDeclaration>. In fact, all color constants in the java.awt.Color class are declared as StaticFieldDeclarations.
You may try yourself opening the java.awt.Color (Control/Cmd + N, type "Color", maybe also check the "Include stubs and non-project models" checkbox) class and check that, for example, the "white" constant is a StaticFieldDeclaration.
	[image:]

So our task inside the reference macro will be to retrieve the StaticFieldDeclaration from within the Color class that corresponds with the color that the Circle has set as its color child. We will do this programmatically and so we will need to set dependencies on the right modules and models, which will allow us to write the required code.
First, the generator module has to depend on BaseLanguage in order to be able to refer to the StaticFieldDeclaration concept, which is declared in that language:
	[image:]

Second, the generator model needs to be able to refer to the concepts defined in structure of the Shapes language:
	[image:]

With these languages imported we should be able to enter the code that discovers the correct static field declaration within the Color class:
	[image:]

The node-ptr/.../ construct allows you to obtain a node in the imported models of a specified concept represented with the given name. Since there only exists one Color class in JDK, the reference identified as node-ptr/Color/ will be unique and will be pointing into the model to the Color class.
Note: Make sure you pick the right Color element from the completion menu. It must be java.awt.Color, not the Color concept from the Shapes language.
	[image:]

Node pointer represent persistent references to nodes. To get a reference to the real node in memory, the node pointer must be resolved in the model repository. Use the following code to obtain the repository and resolve the Colornode from it:
	[image:]

The downcast operator gives you access to the underlying Java API, which is currently the only way to get a repository in this place.
	[image:]

Using the collections language you can complete a concise query:
	[image:]

Since node is an instance of the Circleconcept, node.color is the circle's reference to the color (an instance of ColorReference) and node.color.target is a Color (an instance of the Shapes.Color concept) from the accessory model.
In brief, the query searches the first static field declaration within the static field declarations of the java.awt.Color class with the same name as is the name of the color specified for the Circle.
The :eq: operator is a null-safe equality comparison, equivalent to (it.name!=null && it.name.equals(node.color.target.name)). MPS also offers a :ne: operator, which is a negation of :eq:.

XV-E - Reducing Squares
We'll start mimicking how generator is done for Circles. Identically provide the following code for the reduce_Square template.
Hint: Start by inserting a BlockStatement
	[image:]

The values passed into "drawRect" should be replaced with property macros with the upperLeftX, upperLeftY and size properties of the Square.
	[image:]

The drawRect() method's third and fourth parameters specify the rectangle's width and height, respectively. Since we want to draw a square, we need to provide the same values for both arguments. This is why the property macros for the third and fourth parameters both specify size.

XVI - Generating code
Now we're done defining the generator. If you rebuild the language, open MyDrawing, right-click it and choose "Preview Generated Text",
	[image:]

you'll get a nicely structured Java code that properly initializes a JFrame and draws all the shapes:
	[image:]

If your code is different, look into one of your generator templates, they are probably different from the ones presented in the tutorial. Maybe your macros are not attached to the correct pieces of code or the values specified in the Inspector window for the macros differ from the ones in the screen-shots.
If the code does not compile, make sure your generator module depends on the JDK module, as we defined earlier.
XVII - A more robust generation for Squares
The way we handled the graphics local variable in the templates was not quite right. We relied, perhaps too optimistically, on the name of the variable to be the same in map_Canvas, reduce_Circle and reduce_Square. What if the names of the variable in these three templates were not the same? A more robust solution is needed
As indicated earlier in the section for the Circle generator, we'll use the reduce_Square template to properly tie the graphics local variable with the graphics parameter that the map_Canvas template generates. Relying on name match is not very robust.
We basically need to go through three steps:
	Define a storage for created graphics parameters
	Store the graphics parameter in the map_Canvas template
	Retrieve the proper graphics parameter in the reduce_Square template

We'll start by creating a mapping label in the mapping configuration. This will be the storage of ParameterDeclarations, each identified by the Canvas from which it was generated. You may also think of this mapping label as of a dictionary that maps Canvasesto ParameterDeclarations.
	[image:]

The graphicsParam mapping label stores ParameterDeclarations mapped by Canvases that they belong to.
The map_Canvas template now needs to store the graphics parameter in the mapping label. The MAP_SRC macro can be leveraged for that with great success:
	[image:]

Wrap the parameter declaration (including the type) with the MAP_SRC macro (Alt + Enter, pick node macro, type MAP_SRC_). Down in the _Inspector window you then select the mapping label to use for storing the generated parameter declaration. The current source node, which is an instance of the Canvas concept, will be used as the key to identify the generated graphics parameter declaration in the mapping label.
Finally, we need to retrieve the parameter declaration from the mapping label in the reduce_Square template. To indicate clearly that we are no longer relying on naming match, we can use a different name for the variable than graphics. We'll go with g in the sample:
	[image:]

If you Alt + Enter on the g reference and pick reference macro, you'll be able to retrieve the proper graphics parameter from the mapping label:
	[image:]

Then repeat the reference macro creation for the second g reference. Both reference macros attached to the g variable reference that you have just created must specify in the Inspectorthe details on how to obtain the desired target of the reference. The genContext object gives access to helpful methods and properties of the current generation session. Use the "get output for label and input" operation on genContext and provide the graphicsParammapping label as well as the Canvas holding the currently generated Square.
	[image:]

We could now replicate the retrieval of the graphics parameter for the reduce_Circle template, as well.
XVIII - Running the code
It is nice to see generated code, but you might actually prefer seeing it running. MPS can compile and run generated Java code easily. We only need to indicate that Canvas is generated into a runnable Java class and thus Canvas itself should be treated as runnable, or as a "main" class. We only need to make Canvas implement the IMainClass interface and MPS will take care of the rest. The IMainClass interface comes from the jet brains.mps.execution.util language and so we need to add it to the list of dependencies of our language and set the scope to Extends:
	[image:]

Use the Alt + Enter to get the properties dialogs. Notice that the language needs to be marked as Extends.
The Convas concept can now have the IMainClass interface added to the implements section.
	[image:]

Rebuild the language and then right-click on MyDrawing in the Project View and click "Run".
After creating a new drawing you may actually need to compile it first. If the Run 'Node MyDrawing' is not shown in the context menu, it is an indication that MyDrawing has not yet been compiled. Please right-click on the sandbox solution or on the model holding MyDrawing and choose Make. As soon as it finishes you should be able to run your drawing.

	[image:]

You will get a running Java application with your drawing on it as a reward for your efforts.
	[image:]

XIX - An alternative generator - generating XML
Just to give you an idea how the generator could be utilized to generate code in a declarative language, such as xml, here's a simple generator for the Shapes language generating xml. We start from an empty generator. The Java templates and rules have all been deleted:
	[image:]

First, the jetbrains.mps.core.xml anguage must be imported (Control + L). It is the projectional equivalent to xml, as we know it, just like BaseLanguage is a projectional equivalent to Java.
A root mapping rule must be created to convert Canvases into xml files.
	[image:]

The template named map_Canvas gets created.
	[image:]

Xml code must be typed into the template in order to create the required code:
	[image:]

	[image:]

In order to insert the name attribute, type "space" followed by "name=":
	[image:]

A property macro must be set on the contents of the name attribute value:
	[image:]

	[image:]

Some more xml needs to be inserted:
	[image:]

We create a placeholder for all the shapes:
	[image:]

With Control/Cmd + Up select the placeholder xml element:
	[image:]

Then insert a COPY_SRCL macro to loop through all the shapes of a Canvas and trigger their reduction rules:
	[image:]

	[image:]

The name of the generated xml file can also be customized using a property macro.
	[image:]

	[image:]

Reduction rules for Square and Circle now need to be created:
	[image:]

	[image:]

The templates for Circle and Square must hold an XmlElement as their root:
	[image:]

Then the xml template must be fully constructed:
	[image:]

A template fragment must be created around the whole xml code:
	[image:]

	[image:]

The TF symbols indicate the template fragment:
	[image:]

Property macros should be used to parametrize the template:
	[image:]

The property macro must be further specified in the Inspector so that the correct value is used and converted from integer to string:
	[image:]

The same must be repeated for the y xml attribute.
For radius, we will use a dedicated xml element:
	[image:]

	[image:]

And quire similarly for the color reference:
	[image:]

The template for Square will be very similar:
	[image:]

The generator should be holding four root nodes now:
	[image:]

When you rebuild your language and preview the generated code for your sandbox, you should be getting an xml file similar to this:
	[image:]

XX - What to do next
Congratulations! You've just completed your introductory tutorial into MPS.
Now you can continue on your own adding more shapes to the language. Point, Line, Triangle, Rectangle or shapes with colorful fills might be nice additions to our little language.
If you want to understand MPS more thoroughly, it might be a good time to try the in-depth Calculator Tutorial, which explores many of the advanced concepts and will teach you much more about code generation, type-system and scoping.
OEBPS/images/1-Sniimek_obrazovky21.png
N’ map_Canvas

root template
input Canvas

xml map Canvas

Intentions

<NO 5 Add LOOP macro over node.shapes

<pa:' %' Add LOOP macro over node.smodelAttribute

%' Add Node Macro
$¢ %' Add Property Macro

B2 A Property Macro: node.name (property) > |
%' Add Property Macro node shortDescription (property)
%' Add Property Macro: node.virtualPackage (property)
=" Apply COPY_SRCL over node.shapes
=" Apply COPY_SRCL over node.smodelAttribute
' Attach Mapping Label

\d v v v v

vVVvVvy

OEBPS/images/1-Sniimek_obrazovky20.png
= main N map_Canvas

root template
input Canvas

xml map_Canvas

<no prolog>
<painting name="§[]">

SCOPY_SRCL$ <shape></shape>
</painting>

+ .§tructure .gditor B Behavior glntentions < Generator

Inspector
jetbrains.mps.lang.generator.structure.CopySrcListMacro

copy/reduce list of nodes
comment <none>

mapping label <no label>

mapped nodes (genContext, node,
[] hode.shapes;

_ }

OEBPS/images/1-Sniimek_obrazovky19.png
= main N map_Canvas

root template
input Canvas

xml map_Canvas

<no prolog>
<painting name="§$[]">

Intentions
</ %' Add LOOP macro over node.shapes 4
%' Add LOOP macro over node.smodelAttribute »
%' Add Node Macro >

Apply COPY_SRCL over node.shapes >

Z' Apply COPY_SRCL over node.smodelAttribute »

OEBPS/images/1-Sniimek_obrazovky18.png
% main @ map_Canvas

root template
input Canvas

xml map_Canvas

<no prolog>
<painting nam

0>
e

</painting>

OEBPS/images/1-Sniimek_obrazovky17.png
@ main ® map_Canvas.

root template
input Canvas

xml map_Canvas

<no prolog>
<painting name="$[]">

® <shape></shape>
</painting>

OEBPS/images/1-Sniimek_obrazovky16.png
2 main N’ map_Canvas

root template
input Canvas

xml map_Canvas
<no prolog>

<painting name="g§[]">
L] |</painting>

& entity reference
T a# single character
|@<t-- (¥mlContent in jetbrains.mps.core.xml)
/@ <! [CDATA (XmlContent in jetbrains.mps.core.xml)
§u<? processing instructionz

|) <element/> (XmlBaseElement in jetbrains.mps.core.xml) |

| text plain text|

OEBPS/images/1-Sniimek_obrazovky15.png
= main N map_Canvas

root template
input Canvas

xml map_Canvas

<no prolog>
<painting name="$§[]"></painting>

+ (5 Structure (E Editor (B Behavior @ Intentions & Generator

Inspector
jetbrains.mps.lang.generator.structure.PropertyMacro

property value

comment : <none>
value : (templateValue, genContext,
e node.name;

}

node,

OEBPS/images/public-vise-4.png

OEBPS/images/1-Sniimek_obrazovky14.png
= main N map_Canvas

root template
input Canvas

xml map_Canvas

<no prolog>
<painting name=""></painting>
Intentions
%' Add LOOP macro over node.shapes
%' Add LOOP macro over node.smodelAttribute
%' Add Node Macro
%' Add Property Macro
' Add Property Macro: node.shortDescription (property)
%' Add Property Macro: node.virtualPackage (property)
=" Apply COPY_SRCL over node.shapes
=" Apply COPY_SRCL over node.smodelAttribute

\d v vV v v

vVvVvy

OEBPS/images/public-vise-3.png

OEBPS/images/1-Sniimek_obrazovky13.png
& main % map_Canvas.

root template
input Canvas

xml map_Canvas

<no prolog>
<painting name=

></painting>

OEBPS/images/public-vise-2.png

OEBPS/images/1-Sniimek_obrazovky23.png
= main N map_Canvas
mapping configuration main
top-priority group false

mapping labels:
<< ... >>

parameters:
<< ... >>

is applicable:
<always>

conditional root rules:
<< ... >>

root mapping rules:

concept Canvas --> map_Canvas
inheritors false
condition <always>

keep input root default

weaving rules:
<< ... >>

reduction rules:

concept Circle --> choose consequence
inheritors false Intentions
condition <always> %' Replace with instance of AbandoninputRuleConsequence concept 4
' Replace with instance of DismissTopMappingRule concept 4
Z' Replace with instance of InlineSwitchRuleConsequence concept 4
pattern rules: 7' Replace with instance of InlineTemplateWithContextRuleConsequence concept »
<< .0 3> %' Replace with instance of InlineTemplateRuleConsequence concept 4

' Replace with instance of TemplateDeclarationReference concept
reduce references: 7' Replace with instance of WeaveEachRuleConsequence concept

<< ... >> New Template

v v

v

OEBPS/images/1-Sniimek_obrazovky22.png
N’ map_Canvas

root template
input Canvas

%ml $ map_Canvas

<no prolog>
<painting name="§[]">

SCOPY_SRCL$|<shape></shape>
</painting>

OEBPS/images/1-Sniimek_obrazovky31.png
= main T reduce_Circle N map_Canvas

template reduce_Circle

input Circle

parameters
<< ... >

content node:
<TF [<circle> TF>

<center x="[§[]"></center>
</circle>

+ .§tructure .gditor ﬂgonstraints B Behavior & Generator

Inspector
jetbrains.mps.lang.generator.structure.PropertyMacro

property value

comment : <none>
value : (templateValue, genContext, node, operationContext)->string {
L] String.valueOf (node.x);

}

OEBPS/images/1-Sniimek_obrazovky30.png
= main T reduce_Circle N map_Canvas

template reduce_Circle

input Circle

parameters
<< ... >

content node:
<TF [<circle> TF>

<center x=""></center>

</circle> Intentions
%' Add LOOP macro over node.smodelAttribute >
+ (5 Structure ‘E Editor | Constrai 7' Add Node Macro >
Add Property Macro >

AAdAA Dranartyv Marsra: nade chartDNoecar n (nranardv) b

OEBPS/images/1-Sniimek_obrazovky29.png
= main T reduce_Circle N map_Canvas

template reduce_Circle

input Circle

parameters
<< ... >

content node:

&TF <circle> TF>

<center x=""></center>

</eirele>

OEBPS/images/1-Sniimek_obrazovky28.png
® main T reduce Circle W map_Canvas

template
input Circle

parameters
<< .. >

content nod

| ntentions.
'Add LOOP macro over nade.smodelAtirbute.

/ Add Nade Macro. .
‘Apply COPY_SRC for node.color .

\oply COPY_SRCL over node.smodeiAttibute

OEBPS/images/1-Sniimek_obrazovky27.png
2 main T reduce_Circle N map_Canvas

template reduce Circle

input Circle

parameters
<< ... >

content node:

center x=""></center>

OEBPS/images/1-Sniimek_obrazovky26.png
= main T reduce_Circle N map_Canvas

template reduce_Circle

input Circle
parameters
<< ... >

content node:
<circle>

] F?clrc1e>
N &

entity reference

v &# single character
W<l (XmlContent in jetbrains.mps.core.xml)
v <![CDATA (XmlContent in jetbrains.mps.core.xml)
w<? processing instruction

<element/> (XmlBaseElement in jetbrains.mps.core.xml)
v text plain text

OEBPS/images/1-Sniimek_obrazovky25.png
= main T reduce_Circle N map_Canvas

template reduce_Circle

input Circle
parameters
<< ... >

content node:

XmlElement jetbrains.mps.core.xml
v XmlEntityRef lang: jetbrains.mps.core.xml
v XmlEntityRefValue lang: jetbrains.mps.core.xml
v XmlExternallId lang: jetbrains.mps.core.xml
v XmlBaseElement lang: jetbrains.mps.core.xml

=

XmlBasePrologElement lang: jetbrains.mps.core.xml

OEBPS/images/1-Sniimek_obrazovky24.png
v [& generator/jetbrains.mps.samples.Shapes/ (generation re
v jetbrains.mps.samples.Shapes.generator.template
v 1% main@generator (generation required)
2 main
T reduce_Circle
T reduce_Square
runtime
>[5 all models
» [':: Modules Pool

conditional root rules:
<< ... >>

root mapping rules:

concept Canvas --> map_Canvas
inheritors false
condition <always>

keep input root default

weaving rules:
<< ... >>

reduction rules:
concept Circle
inheritors false
condition <always>

-->reduce Circle

concept Square
inheritors false
condition <always>

-->reduce Square

OEBPS/images/1-Sniimek_obrazovky34.png
= main T reduce_Circle N map_Canvas

template reduce_Circle

input Circle

parameters
<< ... >

content node:

<TF [<circle> TF>
<center x="§[|" y="$§[]"></center>
<radius>$[10]</radius>
e <color>$|white]</color>
</circle>

+ .§tructure .gditor ﬂgonstraints B Behavior & Generator

Inspector
jetbrains.mps.lang.generator.structure.PropertyMacro

property value

comment : <none>
value : (templateValue, genContext, node,
node.color.target.name;

}

operationContext)->string {

OEBPS/images/1-Sniimek_obrazovky33.png
= main T reduce_Circle N map_Canvas

template reduce_Circle

input Circle

parameters
<< ... >

content node:

<TF <circle> TF>
<center x="§[|" y="$§[]"></center>
<radius>[$[10]</radius>
</circle>

+ .§tructure .gditor ﬂgonstraints B Behavior & Generator

Inspector
jetbrains.mps.lang.generator.structure.PropertyMacro

property value

comment : <none>
value : (templateValue, genContext, node, operationContext)->string {
L] String.valueOf (node.radius);

}

OEBPS/images/1-Sniimek_obrazovky32.png
= main T reduce_Circle N map_Canvas

template reduce_Circle

input Circle
parameters
<< ... >

content node:

<TF [<circle> TF>
<center x="§[|" y="$§[]"></center>
L] <radius>10K/radius>

</circle>

OEBPS/images/kiticopdf.png

OEBPS/images/kitfr.png

OEBPS/images/kitfaq.png
FAQ

OEBPS/images/kiterror.png

OEBPS/images/kiterror-kitebooks.png

OEBPS/images/kiten.png

OEBPS/images/kitdico.png

OEBPS/images/kitang.png

OEBPS/images/kindlecover.png
\ Developpez.com

Club des developpeuts

Shapes - an introductory MPS
tutorial

Aleksey Makarkin | Oscar Rodriguez | Malick

OEBPS/images/9-8-7-6-5-4-3-2-1-kitinfo.png

OEBPS/images/kiticozip.png

OEBPS/images/kitwarning.png

OEBPS/images/kitwarning-kitebooks.png

OEBPS/images/kitsrcs.png
Sources

OEBPS/images/kitsrc.png
Source

OEBPS/images/KitOOoDVP.gif
€ M.kitooopVP

OEBPS/images/kitinfo.png

OEBPS/images/kitinfo-kitebooks.png

OEBPS/images/kitidea.png

OEBPS/images/kitidea-kitebooks.png

OEBPS/images/1-Sniimek_obrazovky12.png
main | ® map_Canvas

root template
input Canvas

xml map_Canvas

<no prolog>

“<painting></painting

OEBPS/images/public-vise-1.png

OEBPS/images/pdfdvp.png
Developpez.com
Club der développeurs

OEBPS/images/1-Sniimek_obrazovky11.png
% main N map_Canvas

input Canvas

root template]

xml map Canvas

<no prolog>

<element/> (XmlBaseElement in jetbrains.mps.core.xml)

OEBPS/images/1-Sniimek_obrazovky10.png
L —as L R 1 AKX N"— 1

v L jetbrains.mps.samples.Shapes (generation required) << ... >>
» lg structure
> lg editor parameters:
» [¢ constraints <L ... >
» g behavior
» 7 typesystem is applicable:
» [intentions <always>
» ['g accessories
v [& generator/jetbrains.mps.samples.Shapes/ (generation re conditional root rules:
v jetbrains.mps.samples.Shapes.generator.template << .0 >>
v 1% main@generator (generation required) .
3 main root mapping rules:
EERE Canvas) --> NENNEENEEE
runtime inheritors false
condition <always>
>[5 all models

- 22 Modules Pool keep input root default

OEBPS/images/1-Shxx4.png
Logical View
v i Shapes (/Users/vaclav/MPSProjects/Shapes)
» s Shapes.sandbox (generation required)

v L Shapes (generation required)
» s structure (generation required)
Ig editor (generation required)
lie constraints (generation required)
Iig2 behavior (generation required)
[+ typesystem (generation required)
> @ _generator/Shapes/main (generation required)
% runtime
» [z all models
» [12: Modules Pool

>
>
>
>

0 e Generator Properties for Shapes#6299677370397744035
[85 Common G Dependencies | 'L Used Languages © Generators priorities | v=2

Export | Module | Scope
) @ JoK Default v

_ Cancel Apply

OEBPS/images/1-Shxx3.png
Logical View

v i Shapes (/Users/vaclav/MPSProjects/Shapes)

» s Shapes.sandbox (generation required)
v L Shapes (generation required)

» s structure (generation required)
Ig editor (generation required)
lie constraints (generation required)

[+ typesystem (generation required)

>
>
» [g behavior (generation required)
>
v

e _generator/Shapes/main (generation required)

I 1 main@generator (generation required)

2 runtime

e0e

Model properties for main@generator

» [z all models

» [z Modules Pool

J (%) Dependencies | 'L Used Languages © Advanced

Imported models

s
E
E

Shapes.structure
javax.swing@java_stub

java.awt@java_stub

- Cancel Apply m

OEBPS/images/1-Shxx2.png
public class $ MyCanvas| extends JFrame {
private JPanel panel = new JPanel() {
@override
protected void paintComponent (Graphics graphics) {
super.paintComponent (graphics);
SLOOPS Intentions

} Add Documentation Comment
}; Add Documentation Comment
2 Add LOOP macro over node.smodelAttribute

»
»
»
private vo Add Node Macro 2
»
»

LU

this.set 7 Apply COPY_SRC for node.colorRef
7 Apply COPY_SRCL over node.smodelAttribute

this.set ’ . EXIT ON _CLOSE);
. “7 Auto Indent Members > - -
this.add :
7 Deprecate 4
panel.se o, yaye Method Static » 1(500, 500));

this.pacnyyy

IR T T T R I T Y I T

OEBPS/images/1-shapes3004.png
content node:

{
Graphics g = null;

<TF { TF>

g.setColor(Color.->sred);
Intentions $[10]);
Add LOOP macro over node.smodelAttribute *

Add Node Macro b

} ¢ Add Reference Macro 3

=7 Add Reference Macro: node.color b
Apply COPY_SRC for node.color >
Apply COPY_SRCL over node.smodelAttribute »

"7 Attach Mapping Label

OEBPS/images/1-shapes3003.png
template reduce_Square

input Square

parameters
<< ... >>

content node:

{
Graphics g = null;
<TF {

g.setColor(Color.->$ red);

g.drawRect($/10], S/10/, S/10], S[10));
}

TF>

OEBPS/images/11-10-9-8-7-6-5-4-3-2-1-kitinfo.png

OEBPS/images/1-Shx11.png
@ Shapes - [~/MPSProjects/Shapes]
" File System‘ » = | & I-
B2 Shapes (/Users /vaclav/MPSProjects /Shapes
s| Shapes.sandbox
Shapes
W sandbox (¢
N MyDraw
L| Shapes (generati¢
& structure

N Canvas
© color

Make Model 'Shapes.colors'

Rebuild Model 'Shapes.colors'
Preview Generated Text X 38F9
Show Generation Plan

" Test Model

& editor

] constltaints D- Paste 8V

b behavior Get Model Contents from Source 08N
7 typesystem

-~) Resolve Stub References to MPS Code
il accessories

SNERERL Delete Model £33 ots $E

G| generator/Sha Clone Model 4F5
runtime here to open

= all models Copy Model Name

= Modules Pool Optimize Imports

— Fix Module Imports

OEBPS/images/8-7-6-5-4-3-2-1-kitinfo.png

OEBPS/images/1-Shx105.png
reduce_Circle - Shapes - [~/MPSProjects/Shapes]

SONEgiN0) (£ FileSystem | » = %%~ I© (@ main (3 reduce_Circle

() Circle "]
® Color tenplate reduce_Circle
(5) ColorReference dLnput C1.rc1e 5
® Shape [NON) Model properties for Shapes.generator.template.main@generator
(® square > Dependencies [L|Used Languages © Advanced
» [& editor
» [& constraints Imported models |
» [behavior b java.awt@java_stub
> htypesystem b javax.swing@java_stub
[accessories
v [l generator/Shapes/ . “ II
v [Shapes.generator.te [jetbrains.mps.lang.core.structure
+ [main@generati
= main
@ % map_Canv.
(@ reduce_Circl
[runtime b
» [all models
Inspector - 2R
jetbrains.mps.lang.generator.stru E Declaration
 reference target +-QY
comment : <none>
referent : (outputNode, Cancel Apply m
<no statem

n/a nja w B8 @:0FF Q| 562 of 1820M

OEBPS/images/7-6-5-4-3-2-1-kitinfo.png

OEBPS/images/1-Shx104.png
reduce_Circle - Shapes - [~/MPSProjects/Shapes]

LogicalView ml » = | - 1* @ main (D reduce_Circle
() Circle]

® Color template reduce_Circle

(5) ColorReference - B input .C1rc1e
(® Shape [JON] Generator Properties for Shapes#2788596466441677573

(5 Square [5k Common % Dependencies [L|Used Languages © Generators priorities “=2
[& editor

[& constraints Export | Module | Scope
[behavior 1 [8JDK Default v

[typesystem (1 [L]jetbrains.mps.baseLanguage Default -
1l accessories I -

|G| generator/Shapes/

v [Shapes.generator.t
v [E main@generator
& main
@ % map_Canvz
(@ reduce_Circle
3 runtime ®
» [all models

Inspector - 22
jetbrains.mps.lang.generator.st Open Concept Declaration

reference target

4 vVvVvyYVvyy

comment : <none>
referent : (outputNode, n> | string) {
<no statemd + - Q

}

Cancel | Apply IS

—na nja & B8 @:0FF () 544 of 1820M

| .

OEBPS/images/6-5-4-3-2-1-kitinfo.png

OEBPS/images/1-Shx102.png
[AON] | reduce_Circle - Shapes - [~/MPSProjects/Shapes]

0§ Logical View, [RERZTS System | » = | - I (@ main (T reduce_Circle =% Canvas

37 Shapes (/Users/vaclav/MPSProjects /Shapes 7]
[5] Shapes.sandbox (generation required) template reduce_Circle
input Circle
[Shapes
@ sandbox (generation required) parameters
@ MyDrawing << ... >>
[L] Shapes (generation required)
[& structure content node:
@ Canvas {
(® Circle Graphics graphics = null;
© Color e (Color.=>$ [red) =
lorRef graphics.setColor(Color.->$ [red);
@ ColorReference graphics.drawOval($ [10], $[10], $/10], $[10]); II
(5 Shape)
(5) Square }

[& editor (generation required)

[& constraints

[behavior

[typesystem

accessories

%! generator/Shapes /<no name> (gener. T L ® Circle J (E) Circle_Editor | (@ reduce_Circle | & main
Inspector - 22
jetbrains.mps.lang.generator.structure.ReferenceMacro Open Concept Declaration

reference target

comment : <none>
referent : (outputNode, genContext, operationContext, node)->join(node<StaticFieldDeclaration> | string) {
Sho. statements>

}

@ Error: Return expected n/a n/a w Bf ©0ON Q| 3580f 1820M

OEBPS/images/5-4-3-2-1-kitinfo.png

OEBPS/images/1-Shx101.png
F}Common @, Dependencies ﬁ Used Languages RT Runtime © Java @}—‘ Facets

[L] Shapes

[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.
[L] jetbrains.

[L] jetbrains.
[intheaine

Language Properties for Shapes

Used Languages and DevKits

mps.baseLanguage
mps.baseLanguage.closures
mps.baselLanguage.collections
mps.baselLanguage.javadoc
mps.baselLanguage.logging
mps.baselLanguage.tuples
mps.baselLanguagelnternal
mps.lang.actions
mps.lang.behavior
mps.lang.constraints
mps.lang.core
mps.lang.dataFlow
mps.lang.editor

Cancel

Apply

OEBPS/images/4-3-2-1-kitinfo.png

OEBPS/images/1-Shx100.png
K JoN) Language Properties for Shapes

[5k Common) Dependencies | [L] Used Languages |. Runtime | © Java | 9F Facets |

Export | Module | Scope

Nothing to show

| Cancel Apply | (LS

OEBPS/images/3-2-1-kitinfo.png

OEBPS/images/1-Shx10.png

OEBPS/images/2-1-kitinfo.png

OEBPS/images/1-Shx1.png
[~ File System | » = | - I-
37 Shapes (/Users/vaclav/MPSProjects /Shapes
[5] Shapes.sandbox (generation required)

[Shapes

@ sandbox (generation required)
() MyDrawing
[L] Shapes (generation required)

[E8k structure (generation required)
@ Canvas
() Circle
(& Color
(5) Shape
(5) Square

[& editor

[& constraints

[behavior

[typesystem

(6] generator/Shapes/<no name>

[runtime

& all models

2 Modules Pool

]

| Color - Shapes - [~/MPSProjects/Shapes]
(& Color

concept Color extends BaseConcept
implements INamedConcept h
instance can be root: true H

alias: color
short description: <no short description>

properties:
<< .. >>

children:
<< .. >>

references:
<< .. >>

Create Editor

+ (@ Color

nfa n/a & @@ @OFF Q| 472 of 1820M

OEBPS/images/15-14-13-12-11-10-9-8-7-6-5-4-3-2-1-kitinfo.png

OEBPS/images/1-shapes3005.png
template reduce_Square

input Square
parameters
<< .0 >>

content node:

{
Graphics g = null;
<TF { TF>
->S gl.setColor(Color.->S(red]);
->$§(g].drawRect (S[10], S§[10], S[10], S[10]);
}
}

(5)Structure (E Editor < Constraints & Behavior| < Generator

ector

rains.mps.lang.generator.structure.ReferenceMacro

reference target

comment : <none>
- referent : (outputNode, genContext, operationContext, node)->join(node<VariableDeclaration> | string) {
genContext.get output graphicParam for (node.parent : Canvas);
1 }

OEBPS/images/13-12-11-10-9-8-7-6-5-4-3-2-1-kitinfo.png

OEBPS/images/12-11-10-9-8-7-6-5-4-3-2-1-kitinfo.png

OEBPS/images/1-Shx12.png
= File System) (S - 2 Ao
v [Shapes (/Users/vaclav/MPSProjects /Shapes
v [5] Shapes.sandbox (generation required)
v [Shapes
v 4 sandbox (generation required)
() MyDrawing
v [L] Shapes (generation required)
[& structure
[& editor
[& constraints
[behavior
[typesystem
1l accessories
v [&k Shapes.colors (generation require
@ black
@™ blue
@ cyan
) green
@™ red

4 vVvVYVvVYVYVYVYY

@ yellow
» [G] generator/Shapes/<no name>

[runtime
» [all models
» [Modules Pool

]

_ white - Shapes - [~/MPSProjects/Shapes]
M) white

Color white

n/a n/a u @@ @:OFF Q) 324 of 1820M

OEBPS/images/1-Shxx1.png
N’ MyDrawing "b MyCanvas

root template
input Canvas

public class $§/MyCanvas| extends JFrame {
private JPanel panel = new JPanel() {

@Override
of protected void paintComponent (Graphics graphics) {
super.paintComponent (graphics);
@ | Intentions
} % Add Documentation Comment >
}; “» Add Documentation Comment >
pr iv Add LOOP macro over node.smodelAttribute »
th “7 Add Node Macro >
Apply COPY_SRCL over node.shapes > | JFrame.EXIT ON CLOSE) .
7 Apply COPY_SRCL over node.smodelAttribute » ! - - 4
Auto Indent Members >

Deprecate , lension(500, 500));
Make Method Static >

OEBPS/images/1-Shx8.png
[BN] New Model

Model root:

(default) /Users/vaclav/MPSProjects/Shapes/Ianguages/Shap...

Model name:

<>

Shapes.colors |

Storage format: \j

Universal XML-based format

carcer (T

OEBPS/images/1-Shx7.png
Messages: \

0|0 16:

o) O 16:

(N) MyDrawing

Make Language 'Shapes'
Rebuild Language 'Shapes'

‘¥ Check Language
Optimize Imports
Analyze

Remove from Project...
Delete Module...
Copy Module Name

Set Folder
Rename Module

[Plugin Aspect
[Refactorings Aspect
[Test Aspect

[# TextGen Aspect

[& Migration Aspect
[@ FindUsages Aspect
[2 Intentions Aspect
[@ Actions Aspect

[@ DataFlow Aspect

W Scripts Aspect

4 Model
Accesory Model
Models from Java Sources

OEBPS/images/1-Shx6.png
o000 .| ColorReference_Editor - Shapes - [~/MPSProjects/Shapes]

0§ Logical View) [N System | » = f%- = (B ColorReference_Editor
]

37 Shapes (/Users/vaclav/MPSProjects /Shapes i
(5] Shapes.sandbox (generation required) <default> editor for concept ColorReference
node cell layout:

[Shapes
@ sandbox (generation required) (Jx[target [%[->[{|Hame} [}
@ MyDrawing inspected cell layout:
[L] Shapes (generation required) <choose cell model>
[& structure (generation required)
@ Canvas
() Circle
@ Color
(s) ColorReference
(5) Shape
(5) Square
[&@k editor (generation required)
[& constraints
[behavior
[typesystem
(6] generator/Shapes/<no name>
[runtime
& all models
2 Modules Pool

+ | (5 ColorReference = (£) ColorReference_Editor

n/a nja w {@® @:0FF Q| 7380f 1820M

]

OEBPS/images/1-Shx5.png
o000 || ColorReference_Editor - Shapes - [~/MPSProjects/Shapes]

0§ Logical View) [N System‘ » = f%- = (B ColorReference_Editor

v [Shapes (/Users/vaclav/MPSProjects /Shapes .]
v [5) Shapes.sandbox (generation required) <default> editor for concept ColorReference

node cell layout:

v [Shapes C [(starget s ->[{nd]

v 4 sandbox (generation required) ® {na make
® MyDra.wmg _ inspected cell laycogrreress ~propertyDeclaration (j.m.l.core.structure.IName
v [L] Shapes (generation required) <choose cell mod
v [& structure (generation required)

(@ Canvas Concept Alias
() Circle
@ Color
(s) ColorReference
(5) Shape
(5) Square

» [@x editor (generation required)

» [& constraints

» [behavior

» [typesystem

» [G] generator/Shapes/<no name>
[runtime

» [all models

» [Modules Pool

+ | (5 ColorReference = (£) ColorReference_Editor

n/a n/a u @@ @:0FF Q| 729 of 1820M

]

OEBPS/images/1-Shx4.png
o000 | ColorReference_Editor - Shapes - [~/MPSProjects/Shapes]
N Logical View [N System‘ » = f%- = (B ColorReference_Editor

37 Shapes (/Users/vaclav/MPSProjects /Shapes . F
[5] Shapes.sandbox (generation required) <default> editor for concept ColorReference

node cell layout:

[Shapes o
@ sandbox (generation required) - ®
| Mwbrawing 0 stargeti> — “linkbeclaration (Shapes.structure.Cc
[] Shapes (generation required) = T = =
& structure (generation required) @ %smt_)delAtt ributes linkDecla rat%on (;! .m.l.core.structure
® Canvas Ce1‘® {alias} ~propertyDeclaration (j.m.l.core.structure
® Circle ‘®) {shortDescription} ~propertyDeclaration (j.m.l.core.structure
@ Color @ {virtualPackage} ~propertyDeclaration (j.m.l.core.structure
® ColorReference (£ #ImplementationRemovedInStubMessage# EditorComponentDeclaration (j.m.1
@ Shape (EJ #ShortDescriptionEditorComponent# EditorComponentDeclaration (j.m.1
® Square (£ #VirtualPackage# EditorComponentDeclaration (j.m.1
B editor (generation required) gil#alias# EditorComponentDeclaratit_):l (j.m.1
[constraints — child-noda
[behavior

[typesystem
(6] generator/Shapes/<no name>
[runtime
& all models
2 Modules Pool

=+ | (5 ColorReference = (E) ColorReference_Editor

]

n/a n/a wu @@ @:OFF Q| 719 of 1820M

OEBPS/images/1-Shx3.png
| ColorReference - Shapes - [~/MPSProjects/Shapes]
(5) ColorReference

o5 Eefie- 202 (L File System | » (S - 2 Ao

37 Shapes (/Users/vaclav/MPSProjects /Shapes
[5] Shapes.sandbox (generation required)

concept ColorReference extends

BaseConcept
implements <none>

[Shapes
@ sandbox (g.eneration required) instance can be root: false
@ MyDrawing alias: <no alias>

[L] Shapes (generation required)
[E8k structure (generation required)

short description: <no short description>

© Canvas properties:
® Circle << ... >>
@ Color)

©® ColorReference children:
(5 Shape << L. >>
© Square references:

[& editor (generation required)
[& constraints

[behavior

[typesystem

(6] generator/Shapes/<no name>

[runtime
& all models
2 Modules Pool

]

target : Color[1]

(5) <no name>[ConceptDeclaration]

n/a nja wu {@® @:0FF Q655 o0f 1820M

OEBPS/images/1-Shx2.png
-0 A
v [Shapes (/Users/vaclav/MPSProjects /Shapes

o5 Eefie 202 (L File System |) =

v [5] Shapes.sandbox (generation required)
v [Shapes
v 4 sandbox (generation required)
() MyDrawing
v [L] Shapes (generation required)
v [E8x structure (generation required)
@ Canvas
() Circle
@ Color
(5) Shape
(5) Square
v [« editor (generation required)
(E) Canvas_Editor
(E) Circle_Editor
(E) Square_Editor
[& constraints
[behavior
[typesystem
(6] generator/Shapes/<no name>
[runtime
» [all models
» [Modules Pool

»
»
»
»

]

.| Color_Editor - Shapes - [~/MPSProjects/Shapes]
(E) Color_Editor

<default> editor for concept Color
node cell layout:
[- Color { name } -1

inspected cell layout:
<choose cell model>

+ | @& Color | (& Color_Editor

n/a n/a u @@ @:OFF Q| 521 of 1820M

OEBPS/images/1-Shx14.png
N) MyDrawing

Painting MyDrawing
circle x: 20 y: 10 radius: 30 color: blue
square x: 200 y: 100 size: 50 color: green

OEBPS/images/1-Shx13.png
00
N Logical View, © File System | » = | - I-
37 Shapes (/Users/vaclav/MPSProjects /Shapes
[5] Shapes.sandbox (generation required)
[Shapes
@ sandbox (generation required)
N MyDrawing
[£] Shapes
[& structure
[& editor
[& constraints
[behavior
[typesystem
il accessories
[z Shapes.colors
@ black
@™ blue
@ cyan
) green
@™ red
™ white
@ yellow
(6] generator/Shapes/<no name>
[runtime
& all models
2 Modules Pool

D Error: No child in obligatory role color

| MyDrawing - Shapes - [~/MPSProjects/Shapes]
(N) white (N) MyDrawing

s s . F|
Painting MyDrawing

circle x: 20 y: 10 radius: 30 color: | | -

square x: 200 y: 100 size: 5@ color: & black ~Color (Shapes.colors)| m
© blue ~Color (Shapes.colors)
) cyan ~Color (Shapes.colors)
) green ~Color (Shapes.colors)
® red ~Color (Shapes.colors)
™ white ~Color (Shapes.colors)
™ yellow ~Color (Shapes.colors)

n/a nja wu [@® @:0FF Q| 7280f 1820M

OEBPS/images/1-Sh45.png
s Shape x | (€ Circle_Editor x

Sauare_Editor %

Canvas_Editor x | N MyDrawing x

<default> editor for comcept Canvas
node cell layout:
@ (- Painting <choose cell model> -]

inspected cell layout:
<choose cell model>

OEBPS/images/1-Sh44.png
& Circle_Editor x

(<default> editor for concept Square
node cell layout:
(- square x: { upperLeftx }

inspected cell layout:
<choose cell model>

{upperLefty } siz

{size)

1

OEBPS/images/1-Tg4.png
root mapping rules:

concept. fanvas |--> map_Canvas
inheritors false
condition <always>

keep input root default

weaving rul
<< >>

OEBPS/images/1-Sh43.png
® Circle_Editor x |5 Square x | (@) Canvas x | (% MyDraving x

<default> editor for comcept Circle
node cell layou
© (- leircle x: { x|}|y: {|y } radius: { radius|}|-]

inspected cell layout:
<choose cell model>

OEBPS/images/1-Tg39.png
template Feduce Circle

input Circle
paramotors
< el >>

gontent noder

Gxuph)cl graphics = null;

etColor (Color. red) ;
drawoval(10, 10, 10, 10);

OEBPS/images/1-Sh42.png
|5 Shape x | (€ Circle_Editor x | s Square x | (3 Canvas X | MyDrawing x

<detault> editor for concept (Circle
node co1l layout:
B S Tt —
inspected ce1l 2
hnose cellfEALLIY
@ {1}
(5 #hortoescriptionsditorconponents
(& #atinet
1 tsmodelattributed
® (-

OEBPS/images/1-Tg38.png
template Feduce Circle

input Circle
parameters
< el >

content node:

B
Graphics graphics = null;

etColor (Color. red)
rawoval(10, 10, 10,

Intentions
 Add Node Macro »
* Add Node Macro CopySrc: node.color »
* Add Node Macro CopySrcl: node.smodelAttribute »
» Add Node Macro Loop: node.smodelAttribute

Create Template Fragment >

7 Replace Block with Its Content »

OEBPS/images/1-Sh7.png
5 <no name> [ConceptDeclaration] *

v 7 Shapes (/Users vaclav/MPSProjects Shapes)
v (5] shapes.sandbox (generation required)
v [Shapes
® sandbox (generation required)
v (1) Shapes (generation required)
v [k structure (generation required)
(3]]
> [editor (generation required)
> [constraints (generation required)
> [behavior (generation required)
> [i7 typesystem (generation required)
>
>
>

& generator/<no name> (generation requ
3 runtime
(@ all models.

» [Modules Pool

=

BaseConcep!
implements <nono>

kno nane>

instance can be root: fal
alias: <no alias>
short description: <no short description>

properties:
<< el >

children:
<<l >

references:
<< el 3>

OEBPS/images/1-Tg48.png
(=) main x| (1) reduce_Circle x (1) redy

(& shapeColor_x |) ColorReference Constraints __x | 4 MyDrawing x | _

BLUE
GREEN

New... lnsert
@ Show Node in Logical View ~ \F2
Show Node in Explorer \F12
Folding >

>

nsert

Surround with... 8T
Preview Generated Text X0 8F9
Language Debug >

@ Find Usages XF7
@ Find Usages Settings... X 0'%F7
Refactoring >

Push Editor Hints

OEBPS/images/1-Sh6.png
v 9 Shapes (/Users/vaclav/MPSProjects/Shapes)
v (8] Shapes.sandbox (generation required)
v [Shapes
4 sandbox (generation required)
v L] Shapes (generation required)

© Concept
© Enum Data Type

© Constrained Data Type

© PrimitiveDataTypeDeclaration
® Annotation Link

© Interface Concept

» [editor

Make Model ‘Shapes.structure'
Rebuild Model 'Shapes.structure'
Preview Generated Text \0'%F9
Show Mappings Partitioning

[Paste £

.baselar
Paste as Java Class et T

Get Model Contents from Source
Resolve Stub References to MPS Code

Delete Models
Clone Model
Copy Model Name

Optimize Imports
Add Missing Imports

Convert to binary format
Convert to file-per-root format

j.m.baseLanguage biTypes
j.m.baseLanguage.closures

m.baseLanguage.collections
j.m.baselanguage.tuples
j.m.Jang typesystem

o Test Model

2 Analyze Model Dependencies

¥ Check Model
@, Find Usages
Refactoring

OEBPS/images/1-Tg47.png
Logical View ~ Gk
v B Shapes (/Users/vaclav/MPSProjects /Shapes)
» [5] shapes.sandbox (generation required)

v [&] Shapes (generation required)
» [structure

[constraints
behavior
[i7 typesystem
8] generator/ (generation required) ﬁl"?’“ graphics = null; -
¥ [Shapes.generator.template graphics.setColor (Color. ->§(red))
v [main@generator (generation r, graphics drawRect (|§(10), $110, §1107, $(101);
v @ main 3 +
» @ reductionMappingRule :
» (@ reductionMappingRule :
» (@ rootMappingRule : map.
» @% map_Canvas
» @ reduce_Circle
(35
s + (@ Structure & Editor[& Generator
Inspector -
jetbrains.mps.lang.generator.structure PropertyMacro Open Concept Declarat
property macro
comment : <none>

© value : (templatevalue, genContext, node, operationContext)->int {
node. upperLeftl;
a ¥

“avvvy

mis -

OEBPS/images/1-Sh54.png
5 Shape x | € Circle_Editor x | € Square Editor x | € Canvas_ditor X | (% MyDrawing X L

Painting MyDrawing
cirele x: 10 y: 20 radius: 30
square x: 100 y: 200 size: 50

OEBPS/images/1-Tg45.png
template Feduce Circle

input Circle
parameters

content node:
¢
Graphics graphics = null;
<F { e
graphics.setColor (Color. red) ;
graphics .drawoval($(107, Intentions
) ' Add Node Macro
* Add Node Macro CopySrc: node.color
% Add Node Macro CopySrcl: node.smodelAtt
» Add Node Macro Loop: node.smodelAttribu
Add Reference Macro
» Add Reference Macro: node.color
Attach Mapping Label

OEBPS/images/1-Sh53.png
606 __ Canvas - Shapes - [~/MPSProjects/Shapes]

7 Logical View + s gt 1~ | s Shape x | e Circle_ditor x | & Square ditor x |
v : N
v [shapes New > ilt> editor for concept Canvas

} cerl Tayouts
v CISha 1 Make Project "
MBS Rebuild Project fiyeine (one) <
»
Jompty cells [<astauits
v 1) shapes ¥ Check Project 7o

v sty Optimize Imports
» @ Add Missing Imports
>

sected cell layout:
Shoose cell model>

Complie Java Files

OEBPS/images/1-Tg44.png
tomplate reduce Circle -

input cle

parameters

content node:
¢
Graphics graphics = null;
<F (e
graphics. setColor (Color. red) ;
graphics.dravoval($(10], $:101, 10, 10);

Intentions

» Add Node Macro

'» Add Node Macro CopySrc: node.color

'» Add Node Macro CopySrcl: node.smodelAttri

'» Add Node Macro Loop: node.smodelAttribute

' Add Property Macro

' Add Property Macro: node.x (property)

* Add Property Macro: node.y (property)
Attach Mapping Label

OEBPS/images/1-Sh5.png
S —
¥ % MyDrawing {null}
1 Concept = jetbrains.mps.samples.Shapes.structure.Canvas
> @ shapes :circle {null}
¥ @ shapes : square (null}

L1 Concept = jetbrains.mps.samples.Shapes.structure.Square
» (@ color - GREEN {null}
v [properties
» © upperLeftX : 50
» © upperLefty : 150
> © size: 100
[referents
=P v @ shapes : square {null}
[Concept = jetbrains.mps.samples.Shapes.structure.Square
» @ color : RED {null}
v [properties
» © upperLeftX : 350
» © upperLefty : 150
> © size: 100
[referents
v [properties
© name : MyDrawing
[referents

OEBPS/images/1-Tg43.png
content node:
B

Graphics graphics = null;
Eo o5
graphics. setColor (Color. red) ;
graphics .drawoval(§(107, 10, 10, 10);
Intentions

 Add Node Macro »
* Add Node Macro CopySrc: node.color >
* Add Node Macro CopySrcl: node.smodelAttribute »
 Add Node Macro Loop: node.smodelAttribute
 Add Property Macro >
 Add Property Macro: node.radius (property) >
» Add Property Macro: node.x (property) »
Add Property Macro: node.y (property) >
Attach Mapping Label

OEBPS/images/1-Sh47.png
hape x | € Circle Editor x | € Square Editor X | (E) Canvas_Editor X | N MyDrawing x

<default> editor for comcept Canvas
node cell layout:

© " painting { mame) 7

inspected cell layout:) yshapest

<chooss cell model> 30‘Shcxtnescxiptianditchcmpcnentl

& #aliask
I tsmodelattributes
W (-
0 (/

nake constant
“linkbeclaration (Shapes.structure.Canvas)
EditorComponentbeclaration (j.m.1.core.editor)
EditorComponentbeclaration (3.m.1.core.editor)
“linkbeclaration (j.m.1.core.structure.baseConcept)
child node cell (indent)

child n 1 list (vertical)
child node cell list (horizontal)
indent

URL property
collection (indent)
collection (vertical)

OEBPS/images/1-Tg42.png
content node:
<

Graphics graphics = null;

Eo o5
graphics. setColor (Color . red) ;
graphics.drawoval(10, 10, 10, 10);

Intentions

 Add Node Macro »
* Add Node Macro CopySrc: node.color »
* Add Node Macro CopySrcl: node.smodelAttribute »
 Add Node Macro Loop: node.smodelAttribute

 Add Property Macro »
» Add Property Macro: node.radius (property) »

Add Property Macro: node.x (property) >
 Add Property Macro: node.y (property) »

Attach Mapping Label

OEBPS/images/1-Sh46.png
Shape x | (€ Circle_Editor x | € Square_Editor X | (£) Canvas_Editor x

<default> editor for comcept Canvas
node cell layout:

© (- Painting { name|} -]

inspected cell layout:
<choose cell model>

OEBPS/images/1-Tg41.png
content node:
¢
Graphics graphics = null;
B
graphics.setColor (Color. red) ;
@ graphics.drawoval(10, 10, 10, 103
b

3

OEBPS/images/1-Tg40.png
Logical View ~ A
v B Shapes (/Users/vaclav/MPSProjects /Shapes)
» [5] shapes.sandbox (generation required)

MyDrawing

D reduce_Sauare

v [E] shapes (generation required)
» [structure
» [editor
constraints
behavior
typesystem
generator/ (generation required)
v [Shapes.generator.template
v [main@generator (generation ©
v @ main
» @ reductionMappingRule :
» (@ reductionMappingRule :
» (@ rootMappingRule : map.
» @% map_Canvas
» @ reduce_Circle
(35

“avvvy

Graphics graphics = null;

=F ((

graphics.setColor (Color. S

Srathics.draunect(si10); #10 W01, S0
b

+ (@ Structure & Editor[& Generator

Inspector

-

jetbrains.mps.lang.generator.structure.PropertyMacro

comment : <none>

© value : (templateValue, genContext, node, operationContext)->int {

node. size;
a)

Open Concept Declarati

i
n
[}

OEBPS/images/1-Sh8.png
v B Shapes (/Users vaclav/MPSProjects Shapes)
v (5] shapes.sandbox (generation required)
v [Shapes
® sandbox (generation required)
v (1) Shapes (generation required)
v [structure (generation required)
|2 shaj
> [editor (generation required)
> [constraints (generation required)
> [behavior (generation required)
> [i7 typesystem (generation required)
>
>
>

& generator/<no name> (generation requ
3 runtime
(@ all models.

» [Modules Pool

(soncept Shape extends BaseConcept
implements <none>

instance can be root: fal
alias: <no alias>
short description: <no short description>

properties:
<< el >

children:
<<l >

references:

OEBPS/images/1-Sh72.png
Module name:

(Qikernet ©)

OEBPS/images/1-Tg50.png
| MyDrawing - Shapes - [~/MPSProjects/Shapes]

ical View ~

|8 1] © Canvas x| (@ reduce_Circle x|

v [Shapes (/Users/vaclav/MPSProjects /Shapes) (€] ShapeColor x

v [5] shapes.sandbox
v [shapes
¥ @ sandbox
> @ MyDrawing
v
v [structure
» @ canvas
» & Circle
» (5 ColorReference
» (3 shape
> & square
editor
constraints
behavior
typesystem
& generator/
v [Shapes.generator.te

“avvvy

Run [Node MyDrawing

>
L]
=

-

/Systen/Library/Java/Jav

Process finished with ex:

ColorReference_Constraints.

[B Common | @ Dependencies | [£] Used Languages | RT Runtime | |

Export | Iscope 1
() (5 jetbrains.mps.kernel Default -

[~ | @ setorais.mps.execution.ui [extonds |

[£) jetbrains. mps.baseLanguage Extends -

OEBPS/images/1-Sh70.png
606
' Logical View + | g 1
v [Shapes (/Users/vaclav/MPSProjects/Shapes)
v [5] Shapes.sandbox (generation required)
v [Shapes
v @ sandbox (generation required)
> ® MyDrawing
_ v Bshapes
vl structure
> © Canvas
> ® Cirde
» (5 ColorReference
» (5 Shape
» & Square
v [editor

» (& Canvas_Editor
o

OEBPS/images/1-Tg5.png
v 7 Shapes (/Users/vaclav/MPSProjects/Shapes)

» [5 Shapes.sandbox (generation required)
v [E] shapes (generation required)

>
>
» [typesystem
v (&) generator/<no name> (generation requl
¥ 1 Shapes.generator.template
v [main@generator (generation req
v @ main

rootMappingRule : map Ca
> map.
3 runtime

» 3 all models
» 2 Modules Pool

nvas

public class map_Canvas {
}

+ @ structure (© Esitor [BGangrater

OEBPS/images/1-shapes3002.png
root template
input Canvas

) private JPanel panel = new JPanel() {

@override

protected void paintComponent (SMAP_SRCS graphicParam Graphics graphics]) {
super.paintComponent (graphics);
SLOOPS | SCOPY _SRCS [System.out.println("Draw here");

) private void initialize() {
+hie cot+tTi+lal/"CMitla ™).

(s) Structure (& Editor & Behavior Intentions | & Generator

pector

orains.mps.lang.generator.structure.MapSrcNodeMacro

map node macro

comment
mapping label
mapped node
mapping func
post-processing

<none> /

<current source node>
<none>
<none>

OEBPS/images/10-9-8-7-6-5-4-3-2-1-kitinfo.png

OEBPS/images/1-shapes3001.png
» [5] jetbrains.mps.samples.Shapes.sandbox

v L] jetbrains.mps.samples.Shapes mapping conf:.gurat:.on main

> T structure top-priority group false
> l& editor
» [constraints .
» G behavior mapping labels:
label graphicParam : Canvas -> ParameterDeclaration

» [t typesystem
» [T intentions

exports:
v |G generator/<no name>

<< ... >>
v [jetbrains.mps.samples.Shapes.generator.template

Vv [zl main@generator
ggf'h MyCanvas
(@ reduce_Circle
(1) reduce_Square
[runtime
» [all madale

parameters:
<< ... >>

Is applicable:
<always>

OEBPS/images/1-welcome20173.png
® 0 Welcome to JetBrains MPS

JetBrains MPS

Version 2017.3

3¢ Create New Project
== Open Project
= Open Sample Project

¥ Check out from Version Control ~

%+ Configure v Get Help ~

OEBPS/images/1-Sh9a.png
v 7 Shapes (/Users/vaclav/MPSProjects Shapes)
v [5] Shapes.sandbox (generation required)
v [shapes
4 sandbox (generation required)
v [shapes (generation required)
v [&@ structure (generation required)
)
> & Shape
» (i@ editor (generation required)
» [constraints (generation required)
» [behavior (generation required)
» [typesystem (generation required)
» (] generator/<no name> (generation requ|
» [runtime
>

(@ all models.
» 3 Modules Pool

(concept Circld extends BaseConcept
inplements <none>

instance can be root: fals
alias: <no alias>
short description: <no short description>

properties:
<< el >

children:
<<l >

references:

OEBPS/images/1-Tut2.png
80606 MyDrawing

OEBPS/images/1-Sh99.png
& ShapeColor (& Circle_Editor € Square_Editor € Canvas_Editor

<default> editor for comcept Circle
node cell layout:

@ (= /eirele + { %1} v+ (Iy|) radiue: (|radius) FSapECSIOEH]

inspected cell layout: @ #5hapecolort

<choose cell model> (O tooiors
(1) tcolori->
© {radius}
@ {x}
@ v}
#ShortbescriptionkditorComponents
@ reiiaer
13 tsmodelattributet
® (-
W (/

Sy

OEBPS/images/1-Tut1.png
Painting MyDrawing

cirele x: 200 y: 300 radius: 100 color: BLUE
square x: 50 y: 150 size: 100 color: GREEN
square x: 350 y: 150 size: 100 color: RED

OEBPS/images/1-Sh98.png
(& ShapeColor € Circle_Editor € Square_Editor € Canvas_Editor

editor component ShapeColor
override:
<no EditorComponent>
applicable concept:
shape

component cell layout:
© (- color: % colof t -

OEBPS/images/1-Tg9.png
map_Canvas L ©swaersor x|
Square_Editor

root template
input Canvas

public el
o

p_Canvas extends JFrame {

OEBPS/images/1-Sh97.png
Editor [l © Concept Editor
I © Editor Component
Behavior ») Cell Keymap
Typesystem » (& Cell Action Map
Actions » i Cell Menu Component

ns g o i]

OEBPS/images/1-Tg8.png
(@ map_Canvas x (&) Square_Editor x

root template
input Canvas

Gpublic class map_Canvas extends JFrame {
}

OEBPS/images/1-Sh96.png
abstract concept Shape extends BaseConcept
implements <nono>

short description: <no short description>

properties:
<< >

chilaren:
7 color : ColorReference(1]}

references:
<< >

OEBPS/images/1-Tg54.png
606 MyDrawing

OEBPS/images/1-Sh9.png
v 7 Shapes (/Users/vaclav/MPSProjects Shapes)
v (5] Shapes.sandbox (generation required)
v [shapes
4 sandbox (generation required)
v [shapes (generation required)
v [&@ structure (generation required)
)
> & Shape
» [i@ editor (generation required)
» [constraints (generation required)
» [behavior (generation required)
» [typesystem (generation required)
» (] generator/<no name> (generation requ|
» [runtime
>

(@ all models.
» 3 Modules Pool

(soncept Circl extends BaseConcept
inplements <none>

instance can be root: fals
alias: <no alias>
short description: <no short description>

properties:
<< el >

children:
<<l >

references:

OEBPS/images/1-Tg53.png
 Logical View +

v [shapes
v @ sandbox
> &

v [L] Shapes

X% B

v [structure

& shapeColor

e

Preview Generated Text ~ \{Q'3F9 |

Set Virtual Package...

» © canvas
circle | Expand All
ColorRe
Shape | L Copy 2C
+ % sovure L Paste jod
> [editor Copy Reference o%C
» [constrainis. COPY Node FQName
» [behavior Delete ®
> [ypesystem gate Delete ¢
v [generator/ Clone Root oFs
v [Shapes.
v Gamar Show Node in Explorer \F12
von
-] language Debug >
{
Node MyDrawing | @ Find Usages ~F7
Joystem/Library O Find Usages Settings... X Q%F7 |
Refactoring >
Process finishe
Add to Favorites >

=]

Create ‘Node MyDrawi

Run 'Node MyDrawing AQF10

@ Debug 'Node MyDrawing' ~0F9

OEBPS/images/1-Tg52.png
© Canvas D reduce_(

concept Canvas

tends BaseConcept
implements INamedConcept
[] [MainClas:

instance can be root: true
alias: <no al
short deseription: <no short description>

children:
shapes : Shape[0..n]

references:
<< >>

OEBPS/images/1-Sh26.png
s Shape x | (s Circle x | s Square x | (@ Canvas x |

Thritnes enstorten:

alias: <no alias>
short description: <no short description>

properties:

children:

© shapes : Shape(0..) fffem—

references:

OEBPS/images/1-Sh25.png
|5 Shape x | s Circle x | s Square x | () Canvas x

concept Canvas extends BaseConcept
implements INamedConcept

instance can be root: true
alias: <no alias>
short description: <no short description>

properties:
<< >

chilaren:
 shapes : Shape

references:
<>

OEBPS/images/1-Tg2.png
>

“avvvy

>
>

v Shapes (/Users/vaclav/MPSProjects/Shapes)
» (5 shapes.sandbox (generation required)
v [&] Shapes (generation required)

structure
editor
constraints
behavior
typesystem

(] generator/<no name> (generation requ

v £ Shapes.generator.template

v [main@generator (generation re:

o

» (@ rootMappingRule : map C4

3 runtime
(@ all models.

 Modules Pool

[©sowerdor x|

X quare_Ed
olorReference_Constraints

mapping configuration main
top-priority group false

mapping lsbels:

<< >

parameters:
<< . >

is spplicable:
<always>

Canvas
fals

<always>
keep input root default

weaving rules:
<< ... >

reduction rules:
<< .. >

pattern rules:
<< . >

abandon roots:
<< .. >

pre-processing scripts:
<< e >

--> <no template>
Intentions

New Root Template »

OEBPS/images/1-Sh24.png
s Shape x | s Circle x | s Square x | (Canvas x

concept Canvas extends BaseConcept
implements INamedConcept

instance can be root: true
alias: <no alias>
short description: <no short description>

children:
Q <no role> :<no target>[0..1]

reference:

OEBPS/images/1-Tg19.png
(€ map_Canvas. x (&) Square_Editor x

root template
input Canvas

public class map_Canvas extends JFrame {
private JPanel panel = mew Janel() {
eoverride
protocted void paintComponent (Graphics graphics) {
super . paintComponent (graphics) ;
System. out.println("Draw here");

)

OEBPS/images/1-Sh23.png
|5 Shape x | s Circle x | s Square x | (5) Canvas x

concept Canvas extends BaseConcept
implements INamedConcept

© instance can be root:

ali

short description: <nofJIiTy

properties:
<< >

children:
<<l >

reference:
<>

OEBPS/images/1-Tg18.png
(@ map_Canvas x (&) Square_Editor x (Ecir

root template
input Canvas

public class map_Canvas extends JFrame {
O private Jranel pancl = mew Janel() {
eoverride
© protected void paintComponent (Graphics graphics) {
super . paintConponent (graphics
System. out.println("Draw hore

)

)
a u
© public void initialize() {
this.setTitle("Title");
this.setDefaultCloseOperation(JFrame. EXIZ ON_ CLOSE);
this.add(panel) ;
panel.setPreferredSize(new Dimension(500, 500)

© public static void main(string[] args) {
nap_Canvas canvas = new map_Canvas();
canvas.initialize();
a)
¥

OEBPS/images/1-Sh21.png
Shape x | s Circle x | s Square x | (5) Canvas x

concept Canvas extends

? inplements

instance can be root:
alias: <no al

£

BaseConcept

© INamedConcept “InterfaceConceptDeclaration
a

short description: <no short description>

propertie:
<< >

children:
<<l >

reference:
<>

OEBPS/images/1-Tg17.png
a

a b abp

public clas

(© map_Canvas

root template
input Canvas

(& Square_Editor

map_Canvas extends JFrame {

private Jpanel panel = mew JPanel() {

Goverride

protected void paintComponent (Graphics graphics) {

super.paintComponent (graphics) ;
System.out.println("Draw here”);

¥

public void initialize() {

<no statements>

¥

public static void main(string(] args) {
map. Canvas canvas - new map. Canvas():

ialize();

OEBPS/images/1-Sh20.png
v 7 Shapes (/Users/vaclav/MPSProjects Shapes)
v (5] Shapes.sandbox (generation required)
v [shapes
4 sandbox (generation required)
v [shapes (generation required)
v [structure (generation required)
)
» (& Circle
> ® Shape
> & Square
» (i@ editor (generation required)
» [constraints (generation required)
» [behavior (generation required)
» [typesystem (generation required)
>
>
>

& generator/<no name> (generation requ
3 runtime
(@ all models.

» 3 Modules Pool

(concept Canvas| extends BaseConcept
inplements <none>

instance can be root: fal
alias: <no alias>
short description: <no short description>

properties:
<< el >
children:
<<l >

references:
<< el 3>

OEBPS/images/1-Tg16.png
a p av a

(€ map_Canvas, x (€ Square_Editor x

root template
input Canvas

Select Methods to Override

Search for: paintCom

@ & getUI0:PanelUl
@5 setUiPanelUvold

@)% getlIClassID:String

@ 7 paramString(:String

@ getccessibleContext(:AccessibleContext

@ % setinheritsPopupMenu(boolean):void

@ s getinheritsPopupMenu(:boolean

(@5 setComponentPopupMenu(PopupMenu):void
{5 getComponentPopupMenu(:JPopupMenu

@ 7 setUI(Componentul):void

@ 7 getComponentGraphics(Graphics):Graphics
[-] onent(Grap|
@7 painiChildren(Graphics):void
@7 painiBorder(Graphics):void
@ update(Graphics):void

@ painiGraphics):void

OEBPS/images/1-Sh31.png
(s)Shape (s)Circle (s) Square (s) Canvas (N) MyDrawing

canvas MyDrawing {

shapes :

{
y : kno y>

X : <no x>
radius : <no radius>

OEBPS/images/1-Tg27.png
(€ map_Canvas x (& Square_Editor x

root template
input Canvas

public class §map Canvas) extends JFrame {
private Jpanel panel = mew JPanel() {
Goverride
protected void paintComponent (Graphics graphics) {
super.paintComponent (graphics) ;

[] $200P5 SCOB] (System. out.println("Draw here")

$SCOPY_SRCS|

OEBPS/images/1-Sh30.png
Shape x Square % | () Canvas % | (i MyDrawing

canvas MyDrawing {
shapes :

(Shape
(Shape

Shapes)
Shape

OEBPS/images/1-Tg25.png
7 Logical View DI & shapeColor ColorReference_Constraints MyDraving x
v Shapes (/Users/vaclav/MPSProjects/Shapes) © map_Canvas & Square_Editor & Circle_Editor x
» (5 shapes.sandbox (generation required) m
v [Shapes (generation required) oot template
» [structure input Canvas
> [editor public class §(map Canvas) extends JFrame {
» [constraints © " private Jeanel panel - new JRanel() {
> [behavior Gl protocted void paintComponent (Graphics graphics) {
> [typesystem supor.paintConponent (graphics);
v (& generator/ (generation required) e 1] . $L00PS System.out.println("Draw here");
v [Shapes.generator.template e
v B © public void initialize() {
v @ main tTitle("S(Title)");
tDefaultCloseOperation(JFrane. FXIZ_ON CLOSE);
» (@ rootMappingRule : map C4 (panol);
> @% map_Canvas terotorzodsize (sow Dinension(500, 500));
pack()
» L1 runtime tvisible(true);
» 3 all models e
» [Modules Pool
O public static void main(string(] args) {
+ (5 Structure ¢ Editor| & Generator
Inspector # L
jetbrains.mps.lang generator.structure.LoopMacro Open Concept Declaration
loop-macro U
comment + <none>

mapping label i <no label>

© mapped nodes : (genContext, node, operationContext)->sequence<nodec> {
‘node. shapes;

a 3

OEBPS/images/1-Sh29.png
s Shape x | (5 Circle x | s Square x | () Canvas x | & MyDrawing x

canvas MyDrawing {

shapes :
§ <>

}

OEBPS/images/1-Tg23.png
117 Logical View. R \& ShapeColor ColorReference_Constraints X MyDrawing x
v B Shapes (/Users/vaclav/MPSProjects /Shapes) map_Canvas x & Square_Editor x & Circle_Editor x
» (5 shapes.sandbox (generation required) m
v [Shapes (generation required) oot template
» [structure input Canvas
> [editor public class s(map_Canvas) extends JFrame {
» [constraints © " private Jeanel panel - new JRanel() {
» [behavior El protocted void paintComponent (Graphics graphics) {
> [typesystem supor. paintConponent (graphics) ;
v [8) generator/ (generation required) R , Systemout.printin(TBraw hore
v [Shapes.generator.template e
v B © public void initialize() {
v @ main 0 this.setTitle("js(Title)");
tDefaultCloseOperation(JFrane. SXIZ 0N CLOSE);
» (@ rootMappingRule : map C4 add(panel);
> @% map_Canvas terotorzodsize (sow Dinension(500, 500));
pack()
» L1 runtime tvisible(true);
» 3 all models a
» 2 Modules Pool . ic void mai :
O public static void main(string(] args) {
+ (& Structure = Editor| & Generator
Inspector # L
jetbrains.mps.lang.generator.structure.PropertyMacro Open Concept Declaration
property macro []
comment : <none>
© value : (templateValue, genContext, node, operationContext)->string {
‘node. name;
a 3

T S S O P T O N ST tzT]

OEBPS/images/1-Sh28.png
@ | | <no name>[Canvas] - Shapes - [~/MPSProjects/Shapes]
= FileSystem | » = | %~ |~ (5)Shape (5 Circle (5) Square (5)Canvas (M) <no name>[Canvas]

v Shapes (/Users /vaclav/MPSProjects /Shapes F|
v [5] Shapes.sandbox (generation required) _ |<"° name> {
v [Shapes shapes :
v @ sandbox (generation required) - .. .
(N <no name>[Canvas] }

v [L] Shapes (generation required)
v [& structure
@ Canvas
(® Circle
(5) Shape
(5) Square
» [& editor (generation required)
» [& constraints (generation required)
» [behavior (generation required)
>
>

[typesystem (generation required)
(6] generator/Shapes/<no name> (gener;
[runtime

» [all models

Messages: \ Messages - 2
© 15:47:27 : Cycle #1: [[Shapes [language]]]

%
L)

n/fa nja wu [@:OFF Ql24of1820M

OEBPS/images/1-Tg22.png
€ map_Canvas x| (€ Square_Editor x| (€ Circle_Editor

root template
input Canvas

public class Smap_Canvas) extends JFrame {
O private Jranel panel = mew Jeanel() {
eoverride
© protected void paintComponent (Graphics graphics) {
super . paintConponent (graphics
System. out.println("Draw here")

a ¥
a h
© public void initialize() {
is.setTitle("ZEC");
setDefault
thisadd(panel) PP
panel.setPrefex i) Add Property Macro >
this.pack() i
this.oetviaible ¥ Add Property Macro: node.alias (property) »

a ‘Add Property Macro: node.name (property) >

 Add Property Macro: node.shortDescription (property) »
 Add Property Macro: node.virtualPackage (property) L

© public static voi

+ @ Structure © gaim.ﬂ

OEBPS/images/1-Sh27.png
anvas - Shapes - [~/MPSProjects/Shapes]

7 Logical View ~ 4| %+ I~ | (5 shape x | 5 Circle x | (s Square x | @ Canvas x |

v [Shapes (/Users/vaclav/MPSProjects /Shapes)

v B Shapes.sandbax concept Canvas extends BaseConcept

implements INamedConcept

v 1 Shapes
W instance can be xoot: true
TR New > Ocanvas (N
M r g“"" Make Model 'Shapes.sandbox’ Test Model
. €2 Rebuild Model 'Shapes.sandbox" £
. f/;": Preview Generated Text \0'3%F9
= Show M Partit | ¥
Y & s showMappings arttioning s ‘shape (U]
> G edicor [Paste BV nces:

» Bconstri Cet Model Contents from Source >>

OEBPS/images/1-Tg21.png
7 Logical View | g & shapeColor ColorReference_Constraints x
v Shapes (/Users/vaclav/MPSProjects/Shapes) © map_Canvas & Square_Editor x
» (5 shapes.sandbox (generation required) m
v [Shapes (generation required) oot template
» [structure input Canvas
> [editor public class §imap_Canvas) extends JFrame {
» [constraints © " private Jeanel panel - new JRanel() {
» [behavior El protocted void paintComponent (Graphics graphics) {
> [typesystem supex . paintComponent (graphics) ;
v [E] generator/ (generation required) o) Systen. out.println("Draw here”);
v [Shapes.generator.template e
v B © public void initialize() {
v @ main this.setTitle("Title’);
ma this setDefaultCloseOperation(JFrane. EXIZ 0N CLOSE);
» (@ rootMappingRule : map C4 this_add(panel);
> @% map_Canvas panel. sotprotorredsize(sow Dinension(500, 500));
bt ;
» L1 runtime this setVisible(true);
» 3 all models e
Modules Pool . o .
© public static void main(string[] args) {
+ (& Structure = Editor| & Generator
Inspector # L
jetbrains.mps.lang.generator.structure. PropertyMacro Open Concept Declaration
property macro
comment : <none>
lue : (templateValue, genContext, node, operationContext)->string {
‘node. name;
)

B e 08 @or m [EEoMor1o7a|

OEBPS/images/1-Tg20.png
(€ map_Canvas. x (&) Square_Editor x (€ Circle_Editor

root template
input Canvas

public class map Canvas extends JFrame {
private J¢
Goverria]|PoP]
protectes i Add Property Macro >
Systen, 7 Add Property Macro: node.alias (property) >
¥ Add Property Macro: node.name (property) >
i 7 Add Property Macro: node.shortDescription (property) »

1 Add Property Macro: node.virtualPackage (property) »

public voi¢

OEBPS/images/1-Sh36.png
(& Concept Editor

Constraints » (& Editor Component
Behavior » @ Cell Keymap
Typesystem » (& Cell Action Map
Actions » i Cell Menu Component

OEBPS/images/1-Sh35.png
© Canvas

Optimize Imports
Add Missing Imports

Compile Java Files
Recompile Java Files
Clean Compiled Java Files

Create 'All Tests in Project'...
» Run ‘Al Tests in Project’ ~QF10
@ Debug 'All Tests in Project’ ~ ~0F9

Project Paths I

acept Canvas extends BaseConcept

implements INamedConcept

hapes : Shape[0..n]

oferences:
< ... o>>

OEBPS/images/1-Tg30.png
> choose consequence
inheritors false
condition <always>

Intentions

chh]

New Template

7 Replace with instance of AbandonlnputRuleConseq
 Replace with instance of DismissTopMappingRule

pattern rules:

7 Replace

ith instance of Inl
e CoEReRE A

eSwitchRuleCons equs

OEBPS/images/1-Sh34.png
s Shape x | s Circle x | s Square x

@ Canvas x

canvas MyDrawing {

shapes :
cirele {
x: 10
y: 20
radius : 30

3

square {
upper left X : 100
upper left Y : 200
size : 50

@ MyDrawing x

OEBPS/images/1-Tg3.png
root mapping rules:

7 [concept Canvas
inheritors fal.
condition <always>

keep input root default
weaving rules:
<< aan >

reduction rules:
o>

pattern rules:
<< aan >>

pre-processing scripts:

--> <no template>

W Canvas

® enum
® interface
@ g@interface

@ PrimitiveTypeDescriptor

W ControlAbstractionContainer

W CustomContainers

@ Tuple

% generator descriptor

9 generator parameters

=z

OEBPS/images/1-Sh33.png
5 Shape x | (5 Circle x | s Square x | () Canvas x | & MyDrawing x

canvas MyDrawing {

OEBPS/images/1-Tg29.png
v Shapes (/Users/vaclav/MPSProjects /Shapes)
» (5 shapes.sandbox (generation required)
v [&] Shapes (generation required)

» [structure

Bepping labels:

<< >

» [editor parameters:
» [constraints e >
> behavior is 9 -
> [typesystem - apelicabl
v [l generator/ (generation required) it onal root rul
v [Shapes.generator.template cofitions rookrulest
v [main@generator (generation re
ve oot mapping rules:
‘concept Canvas | --> map Canv
» (@ reductionMappingRule : re; inheritors false
> (@ rootMappingRule : map Ca condition <aluays>
> @ map.Canvas keop input root default
» [runtime
» [all models weaving rules:

» [Modules Pool

<< ... >

T
e H)
I

abandon roots:
<< .. >

—processing scripts:
<< e >

OEBPS/images/1-Sh32.png
s Shape x | s Circle x | s Square x | () Canvas x | (% MyDrawing x

canvas MyDrawing {

shapes :
cirele {
x: 10
y: 20
radius : 30

OEBPS/images/1-Tg28.png
root template
input Canvas

public class §MyCanvas) extends JPrame {

' private JPanel panel = mew Janel() {
eoverride
1 protected void paintComponent (Graphics graphics) {
super. paintComponent (graphics) ;
@ $200PS SCOPY|SRCS System.out.println("Draw here');
1 3
1
(& Structure (& Editor [& Generator
sector

orains.mps.lang.generator. structure. CopySrcNodeMacro
copy/reduce node macro
comment. <none>

mapping label : <no label>
mapped mode & <curremt source mode>

OEBPS/images/1-Sh41.png
<default> editor for concept Circle
node cell layout:
@ [-|eirele x: choose cell models -]

inspected cell layout:
<choose cell model>

OEBPS/images/1-Tg37.png
template Feduce Circle

input Circle
parameters
<< >

content node:
B

Graphics graphics = null;
?
}

}

OEBPS/images/1-Sh40.png
s Shape x | (&) Circle_Editor x | s Square x | () Canvas x

<default> editor for comcept Circle
node cell layout:
@ (- circle <choose cell model>|-]

inspected cell layout:
<choose cell model>

OEBPS/images/1-Tg36.png
template Feduce Circle

input Circle
parameters
<< >

content node:

B

Graphics graphics = null;

block statement]
unrestricted closure literal
unrestricted function type
closure literal

function type

OEBPS/images/1-Sh4.png
v Shapes (/Users/vaclav/MPSProjects/Shapes)
v [5] Shapes.sandbox (generation required)
v [Shapes
@ sandbox (generation required)
v [&] shapes (generation required)

» [structure (generation required)
editor (generation required)
constraints (generation required)
behavior (generation required)
typesystem (generation required)

&) generator/<no name> (generation requ|
3 runtime

» [all models

» [Modules Pool

>
>
>
>
>
>

OEBPS/images/1-Tg35.png
template Feduce Circle

input Circle

paramotors
< el >>

content node:

@ kno statements>

}

OEBPS/images/1-Sh39.png
(€ Circle_Editor x | 5 Square x | () Can

<default> editor for concept Circle
node cell layout:
© i- cirele -]

inspected cell layout:
<choose cell model>

OEBPS/images/1-Tg34.png
template Feduce Circle

input Circle
paramotors
< el >>

content node:

© BlockStatement lang: j.mps.baseLanguagel

OEBPS/images/1-Sh38.png
(& Circle_Editor x | 5 Square x | (9 Canvas x |

¥ MyDrawing x |t
<default> editor for concept Circle U
node cell layout:
?
0w Propertyseciaration (SNApes.sTruCTUTS.CiTEil
in (] #ShortDescriptionEditorComponent# EditorComponentDeclaration (j.m.l.core.edito:
 paliast BditorComponentbeclaration (j.m.1.core.editor
\1; tsmodelattributed “linkDeclaration (j.m.l.core.structure.BaseConcep!
® (- child node cell (indent
® (/ child node cell list (vertica
® (> child node cell list (horizonta
inder
URL propert

collection (indent
collection (vertica
collection (horizonta

OEBPS/images/1-Tg33.png
v (2 Shapes (/Users/vaclav/MPSProjects/Shapes)

>[5 Shapes.sandbox (generation required)
v [E] shapes (generation required)
» [structure
editor
constraints
behavior
typesystem
5] generator/ (generation required)
v [Shapes.generator.template
v [main@generator (generation reqy|
v & main
» (@ reductionMappingRule : re|
» (@ reductionMappingRule : re|
@ rootMappingRule : map C4

“avvvy

> @% map_Canvas
3
» (@ reduce_Square
» [runtime
» G all models
» [Modules Pool

+ @ Structure (© Editor [B Generator

OEBPS/images/1-Sh37.png
hape | (€ Circle_Editor x | 5 Square x | (9 Canvas x | i Mybrawing x

<default> editor for comcept Circle
node cell layout:
<choose cell models)

inspected cell layout:
<choose cell model>

OEBPS/images/1-Tg32.png
v Shapes (/Users/vaclav/MPSProjects/Shapes)
» (5 shapes.sandbox (generation required)

v [&] Shapes (generation required)
» [structure
editor
constraints
behavior
typesystem
&) generator/ (generation required)
v [Shapes.generator.template
v [main@generator (generation re:
v @ main
» (@ reductionMappingRule : re
» (@ reductionMappingRule : re|
» (@ rootMappingRule : map C4
> @5 map_Canvas
» (D reduce_Square
» [runtime
» G all models
Modules Pool

“avvvy

is spplicable:

<always>

conditional root rul

<< >>
root mapping rules:
concept. Canvas |--> map_Canvas
inheritors false
condition <always>

keep input root default

inheritors fal
condition <always>

rmm Ccircle]--)n:dm:eicirr:le

] --> reduce_Square

[:wdition <always>,

OEBPS/images/1-Tg31.png
v Shapes (/Users/vaclav/MPSProjects/Shapes)
» (5 shapes.sandbox (generation required)

v [&] Shapes (generation required)
» [structure
editor
constraints
behavior
typesystem
&) generator/ (generation required)
v [Shapes.generator.template
main@generator (generation re
v @ main
» (@ reductionMappingRule : re|
» (@ rootMappingRule : map C4
> @5 map_Canvas
» [runtime
» G all models
Modules Pool

“avvvy

is spplicable:
<always>
conditi root_rul
<<
root mapping rules:
concept. Canvas |--> map_Canvas
inheritors fals
condition <always>

keep input root default

weaving rul
<< >>

reduction rules:
[cm-pk circle]—-)reduceicircle

inheritors fal
condition <always>

pattern rules:

OEBPS/images/1-kitinfo.png

OEBPS/images/1-kitidea.png

OEBPS/images/1-Snimek_obrazovk2.png
(s circle
%oncept Circle extends BaseCncept]

RS LU | BaseCommentAttribute ~ (ChildAttribute in j.m.lang.core)
s BaseConcept “ConceptDeclaration (j.m.l.core.structure)
s BaseMethodCall ~ (Expression in j.mps.baseLanguage)

instance can be root: fa
alias: <no alias>
short description: <no short description>

OEBPS/images/1-GenShap.png
[J @® Model properties for jetbrains.mps.samples.Shapes.colors

- Dependencies [, Used Languages 4% Advanced

Do Not Generate
File path:
{Users/vaclav/MPSSamples.2018.3/shapes/languages/jetbrains.mps.samples.Shapes/langua¢

Languages engaged on generation

Nothing to show

Cancel Apply

OEBPS/images/1-Snimek_obrazovk1.png
%oncept Circle extends BasleConcept|

implements BaseAssignmentExpression ~(Expression in j.mps.baseLanguage)

instance can be root: fa' BaseCommentAttribute “(ChildAttribute in j.m.lang.core)
alias: <no alias> s BaseConcept “ConceptDeclaration (j.m.l.core.structure)
short description: <no s® BaseMethodCall * (Expression in j.mps.baseLanguage)
s BaseMethodDeclaration ”(GenericDeclaration in j.mps.baseLanguage)

properties: s BasePlaceholder “(ChildAttribute in j.m.lang.core)
S e 27 s BaseStringOperation ~ (BaseConcept in j.mps.baseLanguage)
children: s BaseVariableDeclaration ~ (BaseConcept in j.mps.baseLanguage)

<< ... > s BaseVariableReference * (Expression in j.mps.baseLanguage)

OEBPS/images/1-additional1.png
(5) Shape x | (s Circle x | () Canvas_Editor x | (g Color x

Warning: the node is in a read-only model. Your changes won't be saved

public class Color extends Object implements Paint, Serializable {
private long pData;
/*package*/ int value;
private float(] frgbvalue;
private float(] fvalue;
private float falpha
private ColorSpace cs;
private PaintContext theContext;
public static final Color
public static final Color WHITE;
public static final Color lightGray:
muhlin atatin £inal Calar LreRm GRAY-

Inspector

jetbrains.mps.baseLanguage.structure.StaticFieldDeclaration

isFinal true
annotations:

volatile: false
transiont: false

OEBPS/images/1-Sniimek_obrazovky9.png
conditional root rules:
<< ... >>

root mapping rules:

concept Canvas
inheritors false
condition <always>

keep input root default

weaving rules:
<< ... >>

reduction rules:
<< ... >>

pattern rules:
<< ... >>

-=> <no template>

New
@ @interface
© class

€ enum
@ interface

N ControlAbstractionContainer
N CustomContainers
T Tuple

xml file

(A MigrationDataAnnotation

% generator parameters

OEBPS/images/1-Sniimek_obrazovky8.png
2 main

mapping configuration main
top-priority group false

mapping labels:
<< ... >>

parameters:
<< ... >>

is applicable:
<always>

conditional root rules:

<< ... >> .
Import language: no languages found in the scope

root mapping z Q core.xml O]

<< .o 2> jetbrains.mps.

weaving rules: - jetbrains.mps.core.xml.sax
g :
<< ... >

reduction rules:
<< ... >>

pattern rules:
<< ... >>

OEBPS/images/1-Sniimek_obrazovky38.png
=, map_Canvas.xml

<painting name="MyDrawing">
<circle>

<center x="200" y="300"></center>
<radius>100</radius>
<color>blue</color>

</circle>

<square>

<upperLeftCorner x="50" y="150"></upperLeftCorner>
<size>100</size>
<color>green</color>

</square>

<square>

<upperLeftCorner x="350" y="150"></upperLeftCorner>
<size>100</size>
<color>blue</color>
</square>
</painting>

OEBPS/images/1-Sniimek_obrazovky37.png
G generator/jetbrains.mps.samples.Shapes/
jetbrains.mps.samples.Shapes.generator.template

2 main

N map_Canvas

T reduce_Circle

T reduce_Square
runtime

OEBPS/images/1-Sniimek_obrazovky35.png
= main T reduce_Square T reduce_Circle N map_Canvas

template reduce_Square

input Square

parameters
<< ... >

content node:
<TF <square> TF>

L] <upperLeftCorner x="§$[|" y="$§[]"></upperLeftCorner>
<size>$§[10|</size>
<color>$ whitel</color>
</square>

+ .§tructure .gditor ﬂgonstraints B Behavior & Generator

Inspector
jetbrains.mps.lang.generator.structure.PropertyMacro

property value

comment : <none>
value : (templateValue, genContext, node, operationContext)->string {
String.valueOf (node.upperLeftX);

}

OEBPS/images/1-Sh100.png
<default> editor for comcept Circle
node cell layout:
U (- circle x: { x } y: {|y } radius: { radius) # ShapeColox # -]

(& Circle_Editor € Square_Editor € Canvas_Editor

inspected cell layout:
<choose cell model>

OEBPS/images/1-Snimek_obrazovky_3.png
<default> editor for concept Canvas
node cell layout:
L] [- Painting { name |} (/ % kno link> % /) -1

inspected cell layout:
<choose cell model>

OEBPS/images/1-Sh10.png
| ¥ Logical View + |8 Shape x | (8 Circle x

v B9 Shapes (/Users/vaclav/MPSProjects/Shapes) []
v (5] Shapes.sandbox (generation required) T
v [Shapes 5, AbstractClassifierReference Conceptbecl

instance can be root: f

4 sandbox (generation required) AbstractConceptbeclaration Conceptpec

v (8 Shapes (generation required) s e e o 4% AbstractContainerCreator Coneptbac:
v [structure (generation required) & AbstractContainerType Conceptbecls
) properties AbstractCreator) ConceptDec!
<. 5, AbstractEnuneratoroperation ConceptDeclz
»> (& shape AbstractForStatement Conceptbec
» [editor (generation required) children: 5, AbstractFunctionType ConceptDe
» [constraints (generation required) e AbstractIteratorOperation Conceptbecla
» [behavior (generation required) references (8 AbstractLoopStatement ConceptDec!
» B typesystem (generation required) Zeterence Abstractanoincoberation ConcentDeclz
» (& generator/<no name> (generation requ —
» [runtime
» [all models

» 2 Modules Pool

OEBPS/images/1-Snimek_obrazovky7.png
Inspector
jetbrains.mps.lang.generator.structure.ReferenceMacro

reference target

comment : <none>
referent : (outputNode, genContext, operationContext, node)->join(node<StaticFieldDeclaration>
e node-ptr/Color/.resolve(node.model/.getRepository()).<operation>;

}

OEBPS/images/1-ppview2.png
N’ MyDrawing =, MyDrawing.java
package jetbrains.mps.samples.Shapes.sandbox;

/*Generated by MPS */

import javax.swing.JFrame;
import javax.swing.JPanel;
import java.awt.Graphics;
import java.awt.Color;

import java.awt.Dimension;

public class MyDrawing extends JFrame {
private JPanel panel = new JPanel() {
@override
protected void paintComponent(Graphics graphics) {
super.paintComponent (graphics);
graphics.setColor(Color.blue);
graphics.drawOval(10, 20, 30, 30);
graphics.setColor(Color.green);
graphics.drawRect (100, 200, 50, 50);

}
}i

private void initialize() {
this.setTitle("MyDrawing");
this.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
this.add(panel);
panel.setPreferredSize(new Dimension(500, 500));
this.pack();
this.setVisible(true);

}

public static void main(String[] args) {
MyDrawing canvas = new MyDrawing();
canvas.initialize();

}
}

OEBPS/images/1-Snimek_obrazovky5.png
=: Modules Pool

T checkpoints $ Color ~ (BaseConcept in j.m.samples.Shapes)

s ColorReference ~ (BaseConcept in j.m.samples.Shapes)

© ColorReferenceResolver “ClassConcept (util)

Color “ClassConcept (java.awt@j)

© ColorChooserDialog “ClassConcept (javax.swing@j)

nspector © ColorPaintContext “Clas sConcepij_ (java. ?.Wt@])

jetbrains.mps.lang.generator.structure.Refer e COlOJ_:TraCk?]? X X AClas.sCorTcept (GeERso Bt a))

v com.intellij.diagnostic.logging@java_stub MPS.IDEA

reference target v com.intellij.openapi.localVcs@java_stub MPS.IDEA

comment : <none> vwcom.intellij.ves.log.data.index@java_ stub MPS.IDEA
referent : (outputNode # com. intellij.vcs.log.data@java_ stub MPS.IDEAF.

L] node-ptr/Cold/;

}

OEBPS/images/1-Snimek_obrazovky4.png
Inspector
jetbrains.mps.lang.generator.structure.ReferenceMacro

reference target

comment : <none>
referent : (outputNode, genContext, operationContext, node)->join

L] node-ptr/ /;
}

OEBPS/images/1-Sh16.png
5 Shape x | (8 Circle x

concept Circle extends Shape
plements <none>

instance can be root: false
alias: circle
short description: <no short description>

properties:
x + integer
v + integer
¢ radius : integer

children:

references:

OEBPS/images/1-Sh15.png
' Shape x | (5 Circle x |

concept Circle extends Shape
implements <none>

instance can be root: false
alias: circle
short description: <no short description>

properties:
© x : integer]
children:

references:

OEBPS/images/1-Tg10.png
(€ map_Canvas x & Square_Editor

root template
input Canvas

public class map_Canvas extends JFrame {
© { public static void main(string(] args) {
<no statements>
a
¥

OEBPS/images/1-Sh14.png
s Shape x | () Circle x

concept Circle extends Shape
implements <none>

instance can be root: false
alias: circle
short description: <no short description>

propertie:

Q@ x:ing

children:

references:

OEBPS/images/1-Tg1.png
v (2 Shapes (/Users/vaclav/MPSProjects/Shapes)
>[5 Shapes.sandbox (generation required)
v [£] shapes
» [structure
editor
constraints
behavior
typesystem
5] generator/<no name>
v [Shapes.generator.template
v [main@generator
€]
» [runtime
» G all models
» [Modules Pool

“avvvy

(napping configuration fain
‘top-priority group false

mapping lsbels:

<< >

parameters:
<< . >

is spplicable:
<always>

conditional root rul
<< . >

root mapping rules:

<< . >

weaving rules:
<< ... >

reduction rules:
<< .. >

pattern rules:
<< . >

abandon roots:
<< .. >

—processing scripts:
<< e >

¢-processing scripts:
<< . >

OEBPS/images/1-Sh13.png
' Shape x | (5 Circle x |

concept Circle extends Shape
implements <none>

instance can be root: false
alias: circle
short description: <no short description>

OEBPS/images/1-Snimek_obrazovky_7.png
<default> editor for concept Canvas
node cell layout:
[_
Painting { name }
S (/ % shapes % /)
/empty cell: <default>

-1

inspected cell layout:
<choose cell model>

OEBPS/images/1-Sh12.png
Shape X | (8 Circle x |

concept Circle extends Shape
implements <none>

instance can be root: false

© alias: circld
short description: <no short description>

properties:
<< >

children:
<<l >

references:
<< o>

OEBPS/images/1-Snimek_obrazovky_6.png
<default> editor for concept Canvas
node cell layout:

[- Painting { name } (/ % shapes % /) -1
/¢ Intentions
7' Add Indent >
inspected cell layout: = Add New Line >
<choose cell model>

v

%' Make Horizontal

OEBPS/images/1-Sh11.png
v O Shapes (/Users/vaclav/MPSProjects Shapes) cirele ox —

v 8] Shapes.sandbox (generation required) ey
v [Shapes
@ sandbox (generation required) instance can be root: fal

lias: <no alias>

v [&] Shapes (generation required) short description: <no short description>
v [structure (generation required)
>® properties:
S
> & Shape

» [& editor (generation required) children:

» [constraints (generation required) e
» [behavior (generation required) references:
» [typesystem (generation required) - i
» 16 generator/ <no name> (generation requ|

> £ runtime

» [all models

» 2 Modules Pool

OEBPS/images/1-Snimek_obrazovky_5.png
<default> editor for concept Canvas
node cell layout:
L] [- Painting { name } (/ % shlpes % /) -1
/empty cell: <default>

inspected cell layout:
<choose cell model>

OEBPS/images/1-Sh101.png
\&shapeColor x| e Circlefditor x| (£ Square Editor x (£ Canvas_Editor X

default> editor for concept Square
node cell layout:
© (- square x: { upperLeftx } y: (upperleftY } size: (size) # ShapeColori

inspected cell layout:
<choose cell model>

OEBPS/images/1-Snimek_obrazovky_4.png
<default> editor for concept Canvas
node cell layout:

¢ [~ Painting { name } (/%_% -
shapes “linkDeclaration

inspected cell layout:
<choose cell model>

OEBPS/images/1-Sh2.png
8 06

New Project

Q
DSL

Development
(5] Solution project
Other
W Empty project

Project name: 'ghapes o

Project location: <o/ /yaclav/MPSProjects /Shapes

Description

In MPS, you create new languages and then use them to
write code in solutions. An MPS language describes the
syntax, editor, generator and other aspects of the new.
language.

~ More Settings
Language name:

Shapes 4—

Language location:

Jsers /vaclav/MPSProjects/Shapes /languages /Shapes | | -

Create Runtime Solution

sl ¥ Create Sandbox Solution

Project format: | .mps (directory based) &

Cancel | [oK |

OEBPS/images/1-Tg15.png
(@ map_Canvas x (&) Square_Editor

root template
input Canvas

public class map_Canvas extends JFrame {
private Jpanel panel = mew JPanel() {
®

¥

public veid initialize() {
<no statements>

¥

a b ap a

public static void main(string[] args) {
nap_Canvas canvas = new map_Canvas();
canvas.initialize();

a)

¥

OEBPS/images/1-Sh19.png
v 7 Shapes (/Users/vaclav/MPSProjects Shapes)
v (5] Shapes.sandbox (generation required)
v [shapes
4 sandbox (generation required)
v [shapes (generation required)
v [structure (generation required)
» & Circle
> ® Shape
> & Square
» (i@ editor (generation required)
» [constraints (generation required)
» [behavior (generation required)
» [typesystem (generation required)
>
>
>

& generator/<no name> (generation requ
3 runtime
(@ all models.

» [Modules Pool

concept Square extends Shape
implements <nono>

instance can be root: fal

alias: square
short description: <no short description>

properties:
upperLeftX : integer
upperLeft¥ : integer

Q size : integer

children:
<<l >

references:
<< el 3>

OEBPS/images/1-Tg14.png
(@ map_Canvas x (&) Square_Editor x

D

root template
input Canvas

map_Canvas extends JFrame {

risbleDeclaration in

mps .baseLanguage)

public static void main(string(] args) {
map_Canvas canvas = new map_Canvas();
canvas.initialize(
¥
¥

OEBPS/images/1-Sh18.png
{abstract concept Shape extends BaseConcept
implements <none>

instance can be root: false
alias: <no alias>
short description: <no short description>

OEBPS/images/1-Tg13.png
(€ map_Canvas. x (&) Square_Editor

root template
input Canvas

public class map_Canvas extends JFrame {

© public void initialize() {
<no statements>
a)

U public static void main(string(] args) {
o mofanas canas o sew mep Canves();
canvas.initialize(
ey
¥

OEBPS/images/1-Sh17.png
concept Shape extends BaseConcept
Intentions

instar # Add Deprecated Annotation S
alias: ' Create Reference Concept >
shor
proper » Make Final 3
<% +1 ' Make Rootable »

chilas Generate Default Editor (Expression-like)

<< ..

references:

OEBPS/images/1-Tg12.png
(© map_Canvas x uare_Editor

root template
input Canvas

public class map_Canvas extends JFrame {

ps . baseLanguage)

OEBPS/images/1-Tg11.png
(€ map_Canvas. x (&) Square_Editor

root template
input Canvas

public class map_Canvas extends JFrame {

91
© " public static void main(string(] args) {
nap_Canvas canvas = mew map_Canvas();

a)
¥

